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                      DESIGN AND ANALYSIS OF ALGORITHMS  

  

Objectives :   
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                                                    UNIT 1  

ALGORITHM: 

              An algorithm is a finite set of instructions that , if followed , 

accomplishes a particular task. In addition , all algorithms  must satisfy the 

following criteria 

                             Input 

                            Output 

           Definiteness 

                   Finiteness 

           Effectiveness 

  STACK AND QUEUE 

A stack is an Abstract Data Type (ADT), commonly used in most 

programming languages. It is named stack as it behaves like a real-world stack, 

for example – a deck of cards or a pile of plates, etc. 

A real-world stack allows operations at one end only. For example, we can 

place or remove a card or plate from the top of the stack only. Likewise, Stack 

ADT allows all data operations at one end only. At any given time, we can only 

access the top element of a stack. 

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, 

the element which is placed (inserted or added) last, is accessed first. In stack 

terminology, insertion operation is called PUSH operation and removal operation 

is called POP operation. 

Stack Representation 

The following diagram depicts a stack and its operations − 

 

A stack can be implemented by means of Array, Structure, Pointer, and Linked 

List. Stack can either be a fixed size one or it may have a sense of dynamic 



resizing. Here, we are going to implement stack using arrays, which makes it a 

fixed size stack implementation. 

Basic Operations 

Stack operations may involve initializing the stack, using it and then de-

initializing it. Apart from these basic stuffs, a stack is used for the following two 

primary operations − 

 push() − Pushing (storing) an element on the stack. 

 pop() − Removing (accessing) an element from the stack. 

When data is PUSHed onto stack. 

To use a stack efficiently, we need to check the status of stack as well. For the 

same purpose, the following functionality is added to stacks − 

 peek() − get the top data element of the stack, without removing it. 

 isFull() − check if stack is full. 

 isEmpty() − check if stack is empty. 

At all times, we maintain a pointer to the last PUSHed data on the stack. As this 

pointer always represents the top of the stack, hence named top. The top pointer 

provides top value of the stack without actually removing it. 

First we should learn about procedures to support stack functions − 

peek() 

Algorithm of peek() function − 

begin procedure peek 

   return stack[top] 

end procedure 

Implementation of peek() function in C programming language − 

Example 

int peek() { 

   return stack[top]; 

} 

isfull() 



Algorithm of isfull() function − 

begin procedure isfull 

 

   if top equals to MAXSIZE 

      return true 

   else 

      return false 

   endif 

    

end procedure 

Implementation of isfull() function in C programming language − 

Example 

bool isfull() { 

   if(top == MAXSIZE) 

      return true; 

   else 

      return false; 

} 

isempty() 

Algorithm of isempty() function − 

begin procedure isempty 

 

   if top less than 1 

      return true 

   else 

      return false 

   endif 

    

end procedure 

Implementation of isempty() function in C programming language is slightly 

different. We initialize top at -1, as the index in array starts from 0. So we check if 

the top is below zero or -1 to determine if the stack is empty. Here's the code − 

Example 



bool isempty() { 

   if(top == -1) 

      return true; 

   else 

      return false; 

} 

Push Operation 

The process of putting a new data element onto stack is known as a Push 

Operation. Push operation involves a series of steps − 

 Step 1 − Checks if the stack is full. 

 Step 2 − If the stack is full, produces an error and exit. 

 Step 3 − If the stack is not full, increments top to point next empty space. 

 Step 4 − Adds data element to the stack location, where top is pointing. 

 Step 5 − Returns success. 

 

If the linked list is used to implement the stack, then in step 3, we need to allocate 

space dynamically. 

Algorithm for PUSH Operation 

A simple algorithm for Push operation can be derived as follows − 

begin procedure push: stack, data 

 

   if stack is full 



      return null 

   endif 

    

   top ← top + 1 

   stack[top] ← data 

 

end procedure 

Implementation of this algorithm in C, is very easy. See the following code − 

Example 

void push(int data) { 

   if(!isFull()) { 

      top = top + 1;    

      stack[top] = data; 

   } else { 

      printf("Could not insert data, Stack is full.\n"); 

   } 

} 

 

 

Pop Operation 

Accessing the content while removing it from the stack, is known as a Pop 

Operation. In an array implementation of pop() operation, the data element is not 

actually removed, instead top is decremented to a lower position in the stack to 

point to the next value. But in linked-list implementation, pop() actually removes 

data element and deallocates memory space. 

A Pop operation may involve the following steps − 

 

 

UNIT 2 

Divide & Conquer 

Many algorithms are recursive in nature to solve a given problem recursively 

dealing with sub-problems. 



In divide and conquer approach, a problem is divided into smaller problems, 

then the smaller problems are solved independently, and finally the solutions of 

smaller problems are combined into a solution for the large problem. 

Generally, divide-and-conquer algorithms have three parts − 

 Divide the problem into a number of sub-problems that are smaller 

instances of the same problem. 

 Conquer the sub-problems by solving them recursively. If they are small 

enough, solve the sub-problems as base cases. 

 Combine the solutions to the sub-problems into the solution for the 

original problem. 

Pros and cons of Divide and Conquer Approach 

Divide and conquer approach supports parallelism as sub-problems are 

independent. Hence, an algorithm, which is designed using this technique, can run 

on the multiprocessor system or in different machines simultaneously. 

In this approach, most of the algorithms are designed using recursion, hence 

memory management is very high. For recursive function stack is used, where 

function state needs to be stored. 

Application of Divide and Conquer Approach 

Following are some problems, which are solved using divide and conquer 

approach. 

 Finding the maximum and minimum of a sequence of numbers 

 Strassen’s matrix multiplication 

 Merge sort 

 Binary search 

Max-Min Problem 

Let us consider a simple problem that can be solved by divide and conquer 

technique. 

Problem Statement 

The Max-Min Problem in algorithm analysis is finding the maximum and 

minimum value in an array. 



Solution 

To find the maximum and minimum numbers in a given array numbers[] of 

size n, the following algorithm can be used. First we are representing the naive 

method and then we will present divide and conquer approach. 

Naïve Method 

Naïve method is a basic method to solve any problem. In this method, the 

maximum and minimum number can be found separately. To find the maximum 

and minimum numbers, the following straightforward algorithm can be used. 

Algorithm: Max-Min-Element (numbers[])  

max := numbers[1]  

min := numbers[1]  

 

for i = 2 to n do  

   if numbers[i] > max then   

      max := numbers[i]  

   if numbers[i] < min then   

      min := numbers[i]  

return (max, min)  

Analysis 

The number of comparison in Naive method is 2n - 2. 

The number of comparisons can be reduced using the divide and conquer 

approach. Following is the technique. 

Divide and Conquer Approach 

In this approach, the array is divided into two halves. Then using recursive 

approach maximum and minimum numbers in each halves are found. Later, return 

the maximum of two maxima of each half and the minimum of two minima of 

each half. 

In this given problem, the number of elements in an array is y−x+1, where y is 

greater than or equal to x. 

Max−Min(x,y) will return the maximum and minimum values of an 

array numbers[x...y]. 

Algorithm: Max - Min(x, y)  

if y – x ≤ 1 then   

   return (max(numbers[x], numbers[y]), min((numbers[x], numbers[y]))  



else  

   (max1, min1):= maxmin(x, ⌊((x + y)/2)⌋)  
   (max2, min2):= maxmin(⌊((x + y)/2) + 1)⌋,y)  

return (max(max1, max2), min(min1, min2))  

Analysis 

Let T(n) be the number of comparisons made by Max−Min(x,y), where the 

number of elements n=y−x+1. 

If T(n) represents the numbers, then the recurrence relation can be represented as 

T(n)={T(⌊n2⌋)+T(⌈n2⌉)+2forn>21forn=20forn=1 

Let us assume that n is in the form of power of 2. Hence, n = 2k where k is height 

of the recursion tree. 

So, 

T(n)=2.T(n2)+2=2.(2.T(n4)+2)+2.....=3n2−2 

Compared to Naïve method, in divide and conquer approach, the number of 

comparisons is less. However, using the asymptotic notation both of the 

approaches are represented by O(n). 

Merge Sort 

In this chapter, we will discuss merge sort and analyze its complexity. 

Problem Statement 

The problem of sorting a list of numbers lends itself immediately to a divide-and-

conquer strategy: split the list into two halves, recursively sort each half, and then 

merge the two sorted sub-lists. 

Solution 

In this algorithm, the numbers are stored in an array numbers[]. 

Here, p and q represents the start and end index of a sub-array. 

Algorithm: Merge-Sort (numbers[], p, r)  

if p < r then   

q = ⌊(p + r) / 2⌋  
Merge-Sort (numbers[], p, q)  

    Merge-Sort (numbers[], q + 1, r)  

    Merge (numbers[], p, q, r)  

Function: Merge (numbers[], p, q, r) 

n1 = q – p + 1  



n2 = r – q  

declare leftnums[1…n1 + 1] and rightnums[1…n2 + 1] temporary arrays  

for i = 1 to n1  

   leftnums[i] = numbers[p + i - 1]  

for j = 1 to n2  

   rightnums[j] = numbers[q+ j]  

leftnums[n1 + 1] = ∞  

rightnums[n2 + 1] = ∞  

i = 1  

j = 1  

for k = p to r  

   if leftnums[i] ≤ rightnums[j]  

      numbers[k] = leftnums[i]  

      i = i + 1  

   else 

      numbers[k] = rightnums[j]  

      j = j + 1  

Analysis 

Let us consider, the running time of Merge-Sort as T(n). Hence, 

T(n)={cifn⩽12xT(n2)+dxnotherwise where c and d are constants 

Therefore, using this recurrence relation, 

T(n)=2iT(n2i)+i.d.n 

As, i=logn,T(n)=2lognT(n2logn)+logn.d.n 

=c.n+d.n.logn 

Therefore, T(n)=O(nlogn) 

Example 

In the following example, we have shown Merge-Sort algorithm step by step. 

First, every iteration array is divided into two sub-arrays, until the sub-array 

contains only one element. When these sub-arrays cannot be divided further, then 

merge operations are performed. 



 

Binary Search 

In this chapter, we will discuss another algorithm based on divide and conquer 

method. 

Problem Statement 

Binary search can be performed on a sorted array. In this approach, the index of 

an element x is determined if the element belongs to the list of elements. If the 

array is unsorted, linear search is used to determine the position. 

Solution 

In this algorithm, we want to find whether element x belongs to a set of numbers 

stored in an array numbers[]. Where l and r represent the left and right index of a 

sub-array in which searching operation should be performed. 

Algorithm: Binary-Search(numbers[], x, l, r) 

if l = r then   

   return l   

else  

   m := ⌊(l + r) / 2⌋  
   if x ≤ numbers[m]  then  

      return Binary-Search(numbers[], x, l, m)  

   else  

      return Binary-Search(numbers[], x, m+1, r)  

Analysis 

Linear search runs in O(n) time. Whereas binary search produces the result 

in O(log n) time 



Let T(n) be the number of comparisons in worst-case in an array of n elements. 

Hence, 

T(n)={0T(n2)+1ifn=1otherwiseT(n)={0ifn=1T(n2)+1otherwise 

Using this recurrence relation T(n)=lognT(n)=logn. 

Therefore, binary search uses O(logn)O(logn) time. 

Example 

In this example, we are going to search element 63. 

 

Strassen’s Matrix Multiplication 

In this chapter, first we will discuss the general method of matrix multiplication 

and later we will discuss Strassen’s matrix multiplication algorithm. 

Problem Statement 

Let us consider two matrices X and Y. We want to calculate the resultant 

matrix Z by multiplying X and Y. 

Naïve Method 

First, we will discuss naïve method and its complexity. Here, we are calculating Z 

= X × Y. Using Naïve method, two matrices (X and Y) can be multiplied if the 

order of these matrices are p × q and q × r. Following is the algorithm. 

Algorithm: Matrix-Multiplication (X, Y, Z)  



for i = 1 to p do  

   for j = 1 to r do  

      Z[i,j] := 0  

      for k = 1 to q do  

         Z[i,j] := Z[i,j] + X[i,k] × Y[k,j]  

Complexity 

Here, we assume that integer operations take O(1) time. There are three for loops 

in this algorithm and one is nested in other. Hence, the algorithm takes O(n3) time 

to execute. 

Strassen’s Matrix Multiplication Algorithm 

In this context, using Strassen’s Matrix multiplication algorithm, the time 

consumption can be improved a little bit. 

Strassen’s Matrix multiplication can be performed only on square 

matrices where n is a power of 2. Order of both of the matrices are n × n. 

Divide X, Y and Z into four (n/2)×(n/2) matrices as represented below − 

Z=[IKJL]Z=[IJKL] X=[ACBD]X=[ABCD] and Y=[EGFH]Y=[EFGH] 

Using Strassen’s Algorithm compute the following − 

M1:=(A+C)×(E+F)M1:=(A+C)×(E+F) 

M2:=(B+D)×(G+H)M2:=(B+D)×(G+H) 

M3:=(A−D)×(E+H)M3:=(A−D)×(E+H) 

M4:=A×(F−H)M4:=A×(F−H) 

M5:=(C+D)×(E)M5:=(C+D)×(E) 

M6:=(A+B)×(H)M6:=(A+B)×(H) 

M7:=D×(G−E)M7:=D×(G−E) 

Then, 

I:=M2+M3−M6−M7I:=M2+M3−M6−M7 

J:=M4+M6J:=M4+M6 

K:=M5+M7K:=M5+M7 



L:=M1−M3−M4−M5L:=M1−M3−M4−M5 

Analysis 

T(n)={c7xT(n2)+dxn2ifn=1otherwiseT(n)={cifn=17xT(n2)+dxn2otherwise where

 c and d are constants 

Using this recurrence relation, we get T(n)=O(nlog7)T(n)=O(nlog7) 

Hence, the complexity of Strassen’s matrix multiplication algorithm 

is O(nlog7)O(nlog7). 

 

 

UNIT 3 

Greedy Method 

Among all the algorithmic approaches, the simplest and straightforward approach 

is the Greedy method. In this approach, the decision is taken on the basis of 

current available information without worrying about the effect of the current 

decision in future. 

Greedy algorithms build a solution part by part, choosing the next part in such a 

way, that it gives an immediate benefit. This approach never reconsiders the 

choices taken previously. This approach is mainly used to solve optimization 

problems. Greedy method is easy to implement and quite efficient in most of the 

cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm based 

on heuristic that follows local optimal choice at each step with the hope of finding 

global optimal solution. 

In many problems, it does not produce an optimal solution though it gives an 

approximate (near optimal) solution in a reasonable time. 

Components of Greedy Algorithm 

Greedy algorithms have the following five components − 

 A candidate set − A solution is created from this set. 

 A selection function − Used to choose the best candidate to be added to the 

solution. 

 A feasibility function − Used to determine whether a candidate can be used 

to contribute to the solution. 

 An objective function − Used to assign a value to a solution or a partial 

solution. 



 A solution function − Used to indicate whether a complete solution has 

been reached. 

Areas of Application 

Greedy approach is used to solve many problems, such as 

 Finding the shortest path between two vertices using Dijkstra’s algorithm. 

 Finding the minimal spanning tree in a graph using Prim’s /Kruskal’s 

algorithm, etc. 

Where Greedy Approach Fails 

In many problems, Greedy algorithm fails to find an optimal solution, moreover it 

may produce a worst solution. Problems like Travelling Salesman and Knapsack 

cannot be solved using this approach. 

 

Fractional Knapsack 

The Greedy algorithm could be understood very well with a well-known problem 

referred to as Knapsack problem. Although the same problem could be solved by 

employing other algorithmic approaches, Greedy approach solves Fractional 

Knapsack problem reasonably in a good time. Let us discuss the Knapsack 

problem in detail. 

Knapsack Problem 

Given a set of items, each with a weight and a value, determine a subset of items 

to include in a collection so that the total weight is less than or equal to a given 

limit and the total value is as large as possible. 

The knapsack problem is in combinatorial optimization problem. It appears as a 

subproblem in many, more complex mathematical models of real-world problems. 

One general approach to difficult problems is to identify the most restrictive 

constraint, ignore the others, solve a knapsack problem, and somehow adjust the 

solution to satisfy the ignored constraints. 

Applications 

In many cases of resource allocation along with some constraint, the problem can 

be derived in a similar way of Knapsack problem. Following is a set of example. 

 Finding the least wasteful way to cut raw materials 



 portfolio optimization 

 Cutting stock problems 

Problem Scenario 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. 

There are n items available in the store and weight of ith item is wi and its profit 

is pi. What items should the thief take? 

In this context, the items should be selected in such a way that the thief will carry 

those items for which he will gain maximum profit. Hence, the objective of the 

thief is to maximize the profit. 

Based on the nature of the items, Knapsack problems are categorized as 

 Fractional Knapsack 

 Knapsack 

Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can select 

fractions of items. 

 

  According to the problem statement, 

 There are n items in the store 

 Weight of ith item wi>0wi>0 

 Profit for ith item pi>0pi>0 and 

 Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller pieces. So, 

the thief may take only a fraction xi of ith item. 

0⩽xi⩽10⩽xi⩽1 

The ith item contributes the weight xi.wixi.wi to the total weight in the knapsack 

and profit xi.pixi.pi to the total profit. 

Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 



∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise we 

could add a fraction of one of the remaining items and increase the overall profit. 

Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value 

of piwipiwi, so that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store 

the fraction of items. 

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)  

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  

      x[i] = (W - weight) / w[i]  

      weight = W  

      break  

return x 

Analysis 

If the provided items are already sorted into a decreasing order of piwipiwi, then 

the whileloop takes a time in O(n); Therefore, the total time including the sort is 

in O(n logn). 

Example 

Let us consider that the capacity of the knapsack W = 60 and the list of provided 

items are shown in the following table − 

Item A B C D 

Profit 280 100 120 120 



Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

As the provided items are not sorted based on piwipiwi. After sorting, the items 

are as shown in the following table. 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio (piwi)(piwi) 10 7 6 5 

Solution 

After sorting all the items according to piwipiwi. First all of B is chosen as weight 

of B is less than the capacity of the knapsack. Next, item A is chosen, as the 

available capacity of the knapsack is greater than the weight of A. Now, C is 

chosen as the next item. However, the whole item cannot be chosen as the 

remaining capacity of the knapsack is less than the weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more 

item can be selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any different 

combination of items. 

Job Sequencing with Deadline 



Problem Statement 

In job sequencing problem, the objective is to find a sequence of jobs, which is 

completed within their deadlines and gives maximum profit. 

Solution 

Let us consider, a set of n given jobs which are associated with deadlines and 

profit is earned, if a job is completed by its deadline. These jobs need to be 

ordered in such a way that there is maximum profit. 

It may happen that all of the given jobs may not be completed within their 

deadlines. 

Assume, deadline of ith job Ji is di and the profit received from this job is pi. 

Hence, the optimal solution of this algorithm is a feasible solution with maximum 

profit. 

Thus, D(i)>0D(i)>0 for 1⩽i⩽n1⩽i⩽n. 

Initially, these jobs are ordered according to profit, 

i.e. p1⩾p2⩾p3⩾...⩾pnp1⩾p2⩾p3⩾...⩾pn. 

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)  

D(0) := J(0) := 0  

k := 1  

J(1) := 1   // means first job is selected  

for i = 2 … n do  

   r := k  

   while D(J(r)) > D(i) and D(J(r)) ≠ r do  

      r := r – 1  

   if D(J(r)) ≤ D(i) and D(i) > r then  

      for l = k … r + 1 by -1 do  

         J(l + 1) := J(l)  

         J(r + 1) := i  

         k := k + 1  

Analysis 

In this algorithm, we are using two loops, one is within another. Hence, the 

complexity of this algorithm is O(n2)O(n2). 

Example 

Let us consider a set of given jobs as shown in the following table. We have to 

find a sequence of jobs, which will be completed within their deadlines and will 

give maximum profit. Each job is associated with a deadline and profit. 



Job J1 J2 J3 J4 J5 

Deadline 2 1 3 2 1 

Profit 60 100 20 40 20 

Solution 

To solve this problem, the given jobs are sorted according to their profit in a 

descending order. Hence, after sorting, the jobs are ordered as shown in the 

following table. 

Job J2 J1 J4 J3 J5 

Deadline 1 2 2 3 1 

Profit 100 60 40 20 20 

From this set of jobs, first we select J2, as it can be completed within its deadline 

and contributes maximum profit. 

 Next, J1 is selected as it gives more profit compared to J4. 

 In the next clock, J4 cannot be selected as its deadline is over, hence J3 is 

selected as it executes within its deadline. 

 The job J5 is discarded as it cannot be executed within its deadline. 

Thus, the solution is the sequence of jobs (J2, J1, J3), which are being executed 

within their deadline and gives maximum profit. 

Total profit of this sequence is 100 + 60 + 20 = 180. 

 

 

Optimal Merge Pattern 



Merge a set of sorted files of different length into a single sorted file. We need to 

find an optimal solution, where the resultant file will be generated in minimum 

time. 

If the number of sorted files are given, there are many ways to merge them into a 

single sorted file. This merge can be performed pair wise. Hence, this type of 

merging is called as 2-way merge patterns. 

As, different pairings require different amounts of time, in this strategy we want to 

determine an optimal way of merging many files together. At each step, two 

shortest sequences are merged. 

To merge a p-record file and a q-record file requires possibly p + q record 

moves, the obvious choice being, merge the two smallest files together at each 

step. 

Two-way merge patterns can be represented by binary merge trees. Let us 

consider a set of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is 

considered as a single node binary tree. To find this optimal solution, the 

following algorithm is used. 

Algorithm: TREE (n)   

for i := 1 to n – 1 do   

   declare new node   

   node.leftchild := least (list)  

   node.rightchild := least (list)  

   node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)   

   insert (list, node);   

return least (list);  

At the end of this algorithm, the weight of the root node represents the optimal 

cost. 

Example 

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number 

of elements respectively. 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2 => 20 + 30 = 50 

M2 = merge M1 and f3 => 50 + 10 = 60 

M3 = merge M2 and f4 => 60 + 5 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 



Hence, the total number of operations is 

50 + 60 + 65 + 95 = 270 

Now, the question arises is there any better solution? 

Sorting the numbers according to their size in an ascending order, we get the 

following sequence − 

f4, f3, f1, f2, f5 

Hence, merge operations can be performed on this sequence 

M1 = merge f4 and f3 => 5 + 10 = 15 

M2 = merge M1 and f1 => 15 + 20 = 35 

M3 = merge M2 and f2 => 35 + 30 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Therefore, the total number of operations is 

15 + 35 + 65 + 95 = 210 

Obviously, this is better than the previous one. 

In this context, we are now going to solve the problem using this algorithm. 

Initial Set 

 

Step-1 

 

Step-2 

 



Step-3 

 

Step-4 

 

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons. 

 

Dynamic Programming 

Dynamic Programming is also used in optimization problems. Like divide-and-

conquer method, Dynamic Programming solves problems by combining the 

solutions of subproblems. Moreover, Dynamic Programming algorithm solves 

each sub-problem just once and then saves its answer in a table, thereby avoiding 

the work of re-computing the answer every time. 

Two main properties of a problem suggest that the given problem can be solved 

using Dynamic Programming. These properties are overlapping sub-problems 

and optimal substructure. 

Overlapping Sub-Problems 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines 

solutions to sub-problems. It is mainly used where the solution of one sub-

problem is needed repeatedly. The computed solutions are stored in a table, so that 

these don’t have to be re-computed. Hence, this technique is needed where 

overlapping sub-problem exists. 



For example, Binary Search does not have overlapping sub-problem. Whereas 

recursive program of Fibonacci numbers have many overlapping sub-problems. 

Optimal Sub-Structure 

A given problem has Optimal Substructure Property, if the optimal solution of the 

given problem can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure 

property − 

If a node x lies in the shortest path from a source node u to destination node v, 

then the shortest path from u to v is the combination of the shortest path 

from u to x, and the shortest path from x to v. 

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-

Ford are typical examples of Dynamic Programming. 

Steps of Dynamic Programming Approach 

Dynamic Programming algorithm is designed using the following four steps − 

 Characterize the structure of an optimal solution. 

 Recursively define the value of an optimal solution. 

 Compute the value of an optimal solution, typically in a bottom-up fashion. 

 Construct an optimal solution from the computed information. 

Applications of Dynamic Programming Approach 

 Matrix Chain Multiplication 

 Longest Common Subsequence 

 Travelling Salesman Problem 

 

 Knapsack 

In this tutorial, earlier we have discussed Fractional Knapsack problem using 

Greedy approach. We have shown that Greedy approach gives an optimal solution 

for Fractional Knapsack. However, this chapter will cover 0-1 Knapsack problem 

and its analysis. 

In 0-1 Knapsack, items cannot be broken which means the thief should take the 

item as a whole or should leave it. This is reason behind calling it as 0-1 

Knapsack. 



Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other 

constraints remain the same. 

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not 

ensure an optimal solution. In many instances, Greedy approach may give an 

optimal solution. 

The following examples will establish our statement. 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items are as 

shown in the following table. 

Item A B C D 

Profit 24 18 18 10 

Weight 24 10 10 7 

Without considering the profit per unit weight (pi/wi), if we apply Greedy 

approach to solve this problem, first item A will be selected as it will contribute 

maximum profit among all the elements. 

After selecting item A, no more item will be selected. Hence, for this given set of 

items total profit is 24. Whereas, the optimal solution can be achieved by selecting 

items, B and C, where the total profit is 18 + 18 = 36. 

Example-2 

Instead of selecting the items based on the overall benefit, in this example the 

items are selected based on ratio pi/wi. Let us consider that the capacity of the 

knapsack is W = 60 and the items are as shown in the following table. 

Item A B C 

Price 100 280 120 



Weight 10 40 20 

Ratio 10 7 6 

Using the Greedy approach, first item A is selected. Then, the next item B is 

chosen. Hence, the total profit is 100 + 280 = 380. However, the optimal solution 

of this instance can be achieved by selecting items, B and C, where the total profit 

is 280 + 120 = 400. 

Hence, it can be concluded that Greedy approach may not give an optimal 

solution. 

To solve 0-1 Knapsack, Dynamic Programming approach is required. 

Problem Statement 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. 

There are n items and weight of ith item is wi and the profit of selecting this item 

is pi. What items should the thief take? 

Dynamic-Programming Approach 

Let i be the highest-numbered item in an optimal solution S for W dollars. 

Then S' = S - {i} is an optimal solution for W - wi dollars and the value to the 

solution S is Vi plus the value of the sub-problem. 

We can express this fact in the following formula: define c[i, w] to be the solution 

for items 1,2, … , i and the maximum weight w. 

The algorithm takes the following inputs 

 The maximum weight W 

 The number of items n 

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W)  

for w = 0 to W do  

   c[0, w] = 0  

for i = 1 to n do  

   c[i, 0] = 0  

   for w = 1 to W do  

      if wi ≤ w then  



         if vi + c[i-1, w-wi] then  

            c[i, w] = vi + c[i-1, w-wi]  

         else c[i, w] = c[i-1, w]  

      else  

         c[i, w] = c[i-1, w]  

The set of items to take can be deduced from the table, starting at c[n, w] and 

tracing backwards where the optimal values came from. 

If c[i, w] = c[i-1, w], then item i is not part of the solution, and we continue 

tracing with c[i-1, w]. Otherwise, item i is part of the solution, and we continue 

tracing with c[i-1, w-W]. 

Analysis 

This algorithm takes θ(n, w) times as table c has (n + 1).(w + 1) entries, where 

each entry requires θ(1) time to compute. 

 

 

Longest Common Subsequence 

The longest common subsequence problem is finding the longest sequence which 

exists in both the given strings. 

Subsequence 

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>. 

A sequence Z = <z1, z2, z3, z4, …,zm> over S is called a subsequence of S, if and 

only if it can be derived from S deletion of some elements. 

Common Subsequence 

Suppose, X and Y are two sequences over a finite set of elements. We can say 

that Z is a common subsequence of X and Y, if Z is a subsequence of 

both X and Y. 

Longest Common Subsequence 

If a set of sequences are given, the longest common subsequence problem is to 

find a common subsequence of all the sequences that is of maximal length. 

The longest common subsequence problem is a classic computer science problem, 

the basis of data comparison programs such as the diff-utility, and has applications 

in bioinformatics. It is also widely used by revision control systems, such as SVN 



and Git, for reconciling multiple changes made to a revision-controlled collection 

of files. 

Naïve Method 

Let X be a sequence of length m and Y a sequence of length n. Check for every 

subsequence of X whether it is a subsequence of Y, and return the longest 

common subsequence found. 

There are 2m subsequences of X. Testing sequences whether or not it is a 

subsequence of Y takes O(n) time. Thus, the naïve algorithm would 

take O(n2m) time. 
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Dynamic Programming 

Let X = < x1, x2, x3,…, xm > and Y = < y1, y2, y3,…, yn > be the sequences. To 

compute the length of an element the following algorithm is used. 

In this procedure, table C[m, n] is computed in row major order and another 

table B[m,n] is computed to construct optimal solution. 

Algorithm: LCS-Length-Table-Formulation (X, Y) 

m := length(X)  

n := length(Y)  

for i = 1 to m do  

   C[i, 0] := 0  

for j = 1 to n do  

   C[0, j] := 0  

for i = 1 to m do  

   for j = 1 to n do  

      if xi = yj  

         C[i, j] := C[i - 1, j - 1] + 1  

         B[i, j] := ‘D’  

      else  

         if C[i -1, j] ≥ C[i, j -1]  

            C[i, j] := C[i - 1, j] + 1  

            B[i, j] := ‘U’  

         else  

         C[i, j] := C[i, j - 1] 

         B[i, j] := ‘L’  

return C and B 

Algorithm: Print-LCS (B, X, i, j) 

if i = 0 and j = 0  

   return   

if B[i, j] = ‘D’  

   Print-LCS(B, X, i-1, j-1)  

   Print(xi)  

else if B[i, j] = ‘U’  

   Print-LCS(B, X, i-1, j)  

else  

   Print-LCS(B, X, i, j-1)  

This algorithm will print the longest common subsequence of X and Y. 



Analysis 

To populate the table, the outer for loop iterates m times and the inner for loop 

iterates n times. Hence, the complexity of the algorithm is O(m, n), 

where m and n are the length of two strings. 

Example 

In this example, we have two strings X = BACDB and Y = BDCB to find the 

longest common subsequence. 

Following the algorithm LCS-Length-Table-Formulation (as stated above), we 

have calculated table C (shown on the left hand side) and table B (shown on the 

right hand side). 

In table B, instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left arrow 

and up arrow, respectively. After generating table B, the LCS is determined by 

function LCS-Print. The result is BCB. 

 

 

Spanning Tree 

A spanning tree is a subset of an undirected Graph that has all the vertices 

connected by minimum number of edges. 

If all the vertices are connected in a graph, then there exists at least one spanning 

tree. In a graph, there may exist more than one spanning tree. 

Properties 

 A spanning tree does not have any cycle. 

 Any vertex can be reached from any other vertex. 



Example 

In the following graph, the highlighted edges form a spanning tree. 

 

Minimum Spanning Tree 

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted 

undirected graph that connects all the vertices together with the minimum possible 

total edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can 

be used. Hence, we will discuss Prim’s algorithm in this chapter. 

As we have discussed, one graph may have more than one spanning tree. If there 

are n number of vertices, the spanning tree should have n - 1 number of edges. In 

this context, if each edge of the graph is associated with a weight and there exists 

more than one spanning tree, we need to find the minimum spanning tree of the 

graph. 

Moreover, if there exist any duplicate weighted edges, the graph may have 

multiple minimum spanning tree. 

 



In the above graph, we have shown a spanning tree though it’s not the minimum 

spanning tree. The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 

38. 

We will use Prim’s algorithm to find the minimum spanning tree. 

Prim’s Algorithm 

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this 

algorithm, to form a MST we can start from an arbitrary vertex. 

Algorithm: MST-Prim’s (G, w, r)  

for each u є G.V  

   u.key = ∞  

   u.∏ = NIL  

r.key = 0  

Q = G.V  

while Q ≠ Ф  

   u = Extract-Min (Q)  

   for each v є G.adj[u]  

      if each v є Q and w(u, v) < v.key  

         v.∏ = u  

         v.key = w(u, v)  

The function Extract-Min returns the vertex with minimum edge cost. This 

function works on min-heap. 

Example 

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1. 

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is 

added to the spanning tree. 

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), 

(3, 4), (3, 7)}. 

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is 

selected at random. 

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all the 

vertices are visited, now the algorithm stops. 

The cost of the spanning tree is (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23. There is no 

more spanning tree in this graph with cost less than 23. 



 

Shortest Paths 

Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 

weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 

for each edge (u, v) Є E). 

In the following algorithm, we will use one function Extract-Min(), which 

extracts the node with the smallest key. 

Algorithm: Dijkstra’s-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  

s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d > u.d + w(u, v)  

         v.d := u.d + w(u, v)  

         v.∏ := u 

Analysis 

The complexity of this algorithm is fully dependent on the implementation of 

Extract-Min function. If extract min function is implemented using linear search, 

the complexity of this algorithm is O(V2 + E). 



In this algorithm, if we use min-heap on which Extract-Min() function works to 

return the node from Q with the smallest key, the complexity of this algorithm can 

be reduced further. 

Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. 

Initially, all the vertices except the start vertex are marked by ∞ and the start 

vertex is marked by 0. 

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 



1→ 3→ 7→ 8→ 6→ 9 

This path is determined based on predecessor information. 

 

Bellman Ford Algorithm 

This algorithm solves the single source shortest path problem of a directed 

graph G = (V, E) in which the edge weights may be negative. Moreover, this 

algorithm can be applied to find the shortest path, if there does not exist any 

negative weighted cycle. 

Algorithm: Bellman-Ford-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  

s.d := 0  

for i = 1 to |G.V| - 1  

   for each edge (u, v) Є G.E  

      if v.d > u.d + w(u, v)  

         v.d := u.d +w(u, v)  

         v.∏ := u  

for each edge (u, v) Є G.E  

   if v.d > u.d + w(u, v)  

      return FALSE  

return TRUE 

Analysis 

The first for loop is used for initialization, which runs in O(V) times. The 

next for loop runs |V - 1| passes over the edges, which takes O(E) times. 

Hence, Bellman-Ford algorithm runs in O(V, E) time. 



Example 

The following example shows how Bellman-Ford algorithm works step by step. 

This graph has a negative edge but does not have any negative cycle, hence the 

problem can be solved using this technique. 

At the time of initialization, all the vertices except the source are marked by ∞ and 

the source is marked by 0. 

 

In the first step, all the vertices which are reachable from the source are updated 

by minimum cost. Hence, vertices a and h are updated. 

 

In the next step, vertices a, b, f and e are updated. 



 

Following the same logic, in this step vertices b, f, c and g are updated. 

 

Here, vertices c and d are updated. 

 



Hence, the minimum distance between vertex s and vertex d is 20. 

Based on the predecessor information, the path is s→ h→ e→ g→ c→ d 

 

Multistage Graph 

A multistage graph G = (V, E) is a directed graph where vertices are partitioned 

into k (where k > 1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, 

v) is in E, then u Є si and v Є s1 + 1 for some subsets in the partition and |s1| = |sk| = 

1. 

The vertex s Є s1 is called the source and the vertex t Є sk is called sink. 

G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is 

represented by c(i, j). Hence, the cost of path from source s to sink t is the sum of 

costs of each edges in this path. 

The multistage graph problem is finding the path with minimum cost from 

source s to sink t. 

Example 

Consider the following example to understand the concept of multistage graph. 

 

According to the formula, we have to calculate the cost (i, j) using the following 

steps 



Step-1: Cost (K-2, j) 

In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three 

options to choose the minimum cost at this step. 

Cost(3, 4) = min {c(4, 7) + Cost(7, 9),c(4, 8) + Cost(8, 9)} = 7 

Cost(3, 5) = min {c(5, 7) + Cost(7, 9),c(5, 8) + Cost(8, 9)} = 5 

Cost(3, 6) = min {c(6, 7) + Cost(7, 9),c(6, 8) + Cost(8, 9)} = 5 

Step-2: Cost (K-3, j) 

Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. 

So, the value i = 2 and j = 2 and 3. 

Cost(2, 2) = min {c(2, 4) + Cost(4, 8) + Cost(8, 9),c(2, 6) + 

Cost(6, 8) + Cost(8, 9)} = 8 

Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8)+ Cost(8, 9), 

c(3, 6) + Cost(6, 8) + Cost(8, 9)} = 10 

Step-3: Cost (K-4, j) 

Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) 

+ Cost(5, 8) + Cost(8, 9))} = 12 

c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9))} = 13 

Hence, the path having the minimum cost is 1→ 3→ 5→ 8→ 9. 

 

Travelling Salesman Problem 

Problem Statement 

A traveler needs to visit all the cities from a list, where distances between all the 

cities are known and each city should be visited just once. What is the shortest 

possible route that he visits each city exactly once and returns to the origin city? 

Solution 

Travelling salesman problem is the most notorious computational problem. We 

can use brute-force approach to evaluate every possible tour and select the best 

one. For n number of vertices in a graph, there are (n - 1)! number of possibilities. 



Instead of brute-force using dynamic programming approach, the solution can be 

obtained in lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of 

weighted edges. An edge e(u, v) represents that vertices u and v are connected. 

Distance between vertex u and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in 

city j. Hence, this is a partial tour. We certainly need to know j, since this will 

determine which cities are most convenient to visit next. We also need to know all 

the cities visited so far, so that we don't repeat any of them. Hence, this is an 

appropriate sub-problem. 

For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be 

the length of the shortest path visiting each node in S exactly once, starting 

at 1 and ending at j. 

When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start 

at 1 and end at j. We should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sa

ndi≠jC(S,j)=minC(S−{j},i)+d(i,j)wherei∈ Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)where

i∈Sandi≠j 

Algorithm: Traveling-Salesman-Problem  

C ({1}, 1) = 0  

for s = 2 to n do  

   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  

      C (S, 1) = ∞  

   for all j Є S and j ≠ 1  

      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  

Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  

Analysis 

There are at the most 2n.n2n.n sub-problems and each one takes linear time to 

solve. Therefore, the total running time is O(2n.n2)O(2n.n2). 

Example 

In the following example, we will illustrate the steps to solve the travelling 

salesman problem. 



 

From the above graph, the following table is prepared. 

 1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

S = Φ 

Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,

1)=5 

Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,

1)=6 

Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,

1)=8 



S = 1 

Cost(i,s)=min{Cost(j,s–

(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]}Cost(i,s)=min{Cost(j,s–

(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]} 

Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=

15Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+

6=15 

Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=18cost(2,{4},1)=d[2,4]+cost(4,Φ,1)=10+

8=18Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=18cost(2,{4},1)=d[2,4]+cost(4,Φ,1)

=10+8=18 

Cost(3,{2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3,{2},1)=d[3,2]+cost(2,Φ,1)=13+

5=18Cost(3,{2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3,{2},1)=d[3,2]+cost(2,Φ,1)

=13+5=18 

Cost(3,{4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3,{4},1)=d[3,4]+cost(4,Φ,1)=12+

8=20Cost(3,{4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3,{4},1)=d[3,4]+cost(4,Φ,1)

=12+8=20 

Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=

15Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+

6=15 

Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=

13Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+

5=13 

S = 2 

Cost(2,{3,4},1)=⎧⎩⎨d[2,3]+Cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+15

=25=25Cost(2,{3,4},1){d[2,3]+cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+1

5=25=25Cost(2,{3,4},1)={d[2,3]+Cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=1

0+15=25=25Cost(2,{3,4},1){d[2,3]+cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=

10+15=25=25 

Cost(3,{2,4},1)=⎧⎩⎨d[3,2]+Cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2},1)=12+1

3=25=25Cost(3,{2,4},1){d[3,2]+cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2},1)=12



+13=25=25Cost(3,{2,4},1)={d[3,2]+Cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2},1

)=12+13=25=25Cost(3,{2,4},1){d[3,2]+cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2

},1)=12+13=25=25 

Cost(4,{2,3},1)=⎧⎩⎨d[4,2]+Cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=

27=23Cost(4,{2,3},1){d[4,2]+cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=

27=23Cost(4,{2,3},1)={d[4,2]+Cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+1

8=27=23Cost(4,{2,3},1){d[4,2]+cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+1

8=27=23 

S = 3 

Cost(1,{2,3,4},1)=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪d[1,2]+Cost(2,{3,4},1)=10

+25=35d[1,3]+Cost(3,{2,4},1)=15+25=40d[1,4]+Cost(4,{2,3},1)=20+23=43=35co

st(1,{2,3,4}),1)d[1,2]+cost(2,{3,4},1)=10+25=35d[1,3]+cost(3,{2,4},1)=15+25=4

0d[1,4]+cost(4,{2,3},1)=20+23=43=35Cost(1,{2,3,4},1)={d[1,2]+Cost(2,{3,4},1)

=10+25=35d[1,3]+Cost(3,{2,4},1)=15+25=40d[1,4]+Cost(4,{2,3},1)=20+23=43=

35cost(1,{2,3,4}),1)d[1,2]+cost(2,{3,4},1)=10+25=35d[1,3]+cost(3,{2,4},1)=15+2

5=40d[1,4]+cost(4,{2,3},1)=20+23=43=35 

The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 

3, select the path from 1 to 2 (cost is 10) then go backwards. When s = 2, we get 

the minimum value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then go 

backwards. 

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3 (cost is 

9), then we shall go to then go to s = Φ step. We get the minimum value for d [3, 

1] (cost is 6). 

 

Optimal Cost Binary Search Trees 

A Binary Search Tree (BST) is a tree where the key values are stored in the 

internal nodes. The external nodes are null nodes. The keys are ordered 

lexicographically, i.e. for each internal node all the keys in the left sub-tree are 

less than the keys in the node, and all the keys in the right sub-tree are greater. 



When we know the frequency of searching each one of the keys, it is quite easy to 

compute the expected cost of accessing each node in the tree. An optimal binary 

search tree is a BST, which has minimal expected cost of locating each node 

Search time of an element in a BST is O(n), whereas in a Balanced-BST search 

time is O(log n). Again the search time can be improved in Optimal Cost Binary 

Search Tree, placing the most frequently used data in the root and closer to the 

root element, while placing the least frequently used data near leaves and in 

leaves. 

Here, the Optimal Binary Search Tree Algorithm is presented. First, we build a 

BST from a set of provided n number of distinct keys < k1, k2, k3, ... kn >. Here we 

assume, the probability of accessing a key Ki is pi. Some dummy keys (d0, d1, d2, 

... dn) are added as some searches may be performed for the values which are not 

present in the Key set K. We assume, for each dummy key di probability of access 

is qi. 

Optimal-Binary-Search-Tree(p, q, n)  

e[1…n + 1, 0…n],   

w[1…n + 1, 0…n],  

root[1…n + 1, 0…n]   

for i = 1 to n + 1 do  

   e[i, i - 1] := qi - 1  

   w[i, i - 1] := qi - 1   

for l = 1 to n do  

   for i = 1 to n – l + 1 do  

      j = i + l – 1 e[i, j] := ∞  

      w[i, i] := w[i, i -1] + pj + qj  

      for r = i to j do  

         t := e[i, r - 1] + e[r + 1, j] + w[i, j]  

         if t < e[i, j]  

            e[i, j] := t  

            root[i, j] := r  

return e and root  

Analysis 

The algorithm requires O (n3) time, since three nested for loops are used. Each of 

these loops takes on at most n values. 



Example 

Considering the following tree, the cost is 2.80, though this is not an optimal 

result. 

 

Node Depth Probability Contribution 

k1 1 0.15 0.30 

k2 0 0.10 0.10 

k3 2 0.05 0.15 

k4 1 0.10 0.20 

k5 2 0.20 0.60 

d0 2 0.05 0.15 

d1 2 0.10 0.30 



d2 3 0.05 0.20 

d3 3 0.05 0.20 

d4 3 0.05 0.20 

d5 3 0.10 0.40 

Total   2.80 

To get an optimal solution, using the algorithm discussed in this chapter, the 

following tables are generated. 

In the following tables, column index is i and row index is j. 

e 1 2 3 4 5 6 

5 2.75 2.00 1.30 0.90 0.50 0.10 

4 1.75 1.20 0.60 0.30 0.05  

3 1.25 0.70 0.25 0.05   

2 0.90 0.40 0.05    

1 0.45 0.10     

0 0.05      



w 1 2 3 4 5 6 

5 1.00 0.80 0.60 0.50 0.35 0.10 

4 0.70 0.50 0.30 0.20 0.05  

3 0.55 0.35 0.15 0.05   

2 0.45 0.25 0.05    

1 0.30 0.10     

0 0.05      

root 1 2 3 4 5 

5 2 4 5 5 5 

4 2 2 4 4  

3 2 2 3   

2 1 2    

1 1     

From these tables, the optimal tree can be formed. 



 

Binary Heap 

There are several types of heaps, however in this chapter, we are going to discuss 

binary heap. A binary heap is a data structure, which looks similar to a complete 

binary tree. Heap data structure obeys ordering properties discussed below. 

Generally, a Heap is represented by an array. In this chapter, we are representing a 

heap by H. 

As the elements of a heap is stored in an array, considering the starting index as 1, 

the position of the parent node of ith element can be found at ⌊  i/2 ⌋  . Left child 

and right child of ith node is at position 2i and 2i + 1. 

A binary heap can be classified further as either a max-heap or a min-heap based 

on the ordering property. 

Max-Heap 

In this heap, the key value of a node is greater than or equal to the key value of the 

highest child. 

Hence, H[Parent(i)] ≥ H[i] 

 

Min-Heap 

In mean-heap, the key value of a node is lesser than or equal to the key value of 

the lowest child. 

Hence, H[Parent(i)] ≤ H[i] 

In this context, basic operations are shown below with respect to Max-Heap. 

Insertion and deletion of elements in and from heaps need rearrangement of 

elements. Hence, Heapify function needs to be called. 



 

Array Representation 

A complete binary tree can be represented by an array, storing its elements using 

level order traversal. 

Let us consider a heap (as shown below) which will be represented by an array H. 

 

Considering the starting index as 0, using level order traversal, the elements are 

being kept in an array as follows. 

Index 0 1 2 3 4 5 6 7 8 ... 

elements 70 30 50 12 20 35 25 4 8 ... 

In this context, operations on heap are being represented with respect to Max-

Heap. 

To find the index of the parent of an element at index i, the following 

algorithm Parent (numbers[], i) is used. 



Algorithm: Parent (numbers[], i)  

if i == 1  

   return NULL  

else  

   [i / 2] 

The index of the left child of an element at index i can be found using the 

following algorithm, Left-Child (numbers[], i). 

Algorithm: Left-Child (numbers[], i)  

If 2 * i ≤ heapsize  

   return [2 * i]  

else  

   return NULL  

The index of the right child of an element at index i can be found using the 

following algorithm, Right-Child(numbers[], i). 

Algorithm: Right-Child (numbers[], i)  

if 2 * i < heapsize  

   return [2 * i + 1]  

else  

   return NULL 

 

Insert Method 

To insert an element in a heap, the new element is initially appended to the end of 

the heap as the last element of the array. 

After inserting this element, heap property may be violated, hence the heap 

property is repaired by comparing the added element with its parent and moving 

the added element up a level, swapping positions with the parent. This process is 

called percolation up. 

The comparison is repeated until the parent is larger than or equal to the 

percolating element. 

Algorithm: Max-Heap-Insert (numbers[], key)  

heapsize = heapsize + 1  

numbers[heapsize] = -∞  

i = heapsize  

numbers[i] = key  

while i > 1 and numbers[Parent(numbers[], i)] < numbers[i]  

   exchange(numbers[i], numbers[Parent(numbers[], i)])  



   i = Parent (numbers[], i)  

Analysis 

Initially, an element is being added at the end of the array. If it violates the heap 

property, the element is exchanged with its parent. The height of the tree is log n. 

Maximum log n number of operations needs to be performed. 

Hence, the complexity of this function is O(log n). 

Example 

Let us consider a max-heap, as shown below, where a new element 5 needs to be 

added. 

 

Initially, 55 will be added at the end of this array. 

 

After insertion, it violates the heap property. Hence, the element needs to swap 

with its parent. After swap, the heap looks like the following. 



 

Again, the element violates the property of heap. Hence, it is swapped with its 

parent. 

 

Now, we have to stop. 

 

Heapify Method 

Heapify method rearranges the elements of an array where the left and right sub-

tree of ith element obeys the heap property. 

Algorithm: Max-Heapify(numbers[], i)  

leftchild := numbers[2i]  

rightchild := numbers [2i + 1]  

if leftchild ≤ numbers[].size and numbers[leftchild] > numbers[i]  

   largest := leftchild  

else  

   largest := i  

if rightchild ≤ numbers[].size and numbers[rightchild] > numbers[largest]  

   largest := rightchild  

if largest ≠ i  

   swap numbers[i] with numbers[largest]  

   Max-Heapify(numbers, largest) 



When the provided array does not obey the heap property, Heap is built based on 

the following algorithm Build-Max-Heap (numbers[]). 

Algorithm: Build-Max-Heap(numbers[])  

numbers[].size := numbers[].length  

fori = ⌊  numbers[].length/2 ⌋  to 1 by -1  

   Max-Heapify (numbers[], i)  

 

Extract Method 

Extract method is used to extract the root element of a Heap. Following is the 

algorithm. 

Algorithm: Heap-Extract-Max (numbers[])  

max = numbers[1]  

numbers[1] = numbers[heapsize]  

heapsize = heapsize – 1  

Max-Heapify (numbers[], 1)  

return max  

Example 

Let us consider the same example discussed previously. Now we want to extract 

an element. This method will return the root element of the heap. 

 

After deletion of the root element, the last element will be moved to the root 

position. 



 

Now, Heapify function will be called. After Heapify, the following heap is 

generated. 

 

 

 

SOTRING METHODS 

Bubble Sort 

Bubble Sort is an elementary sorting algorithm, which works by repeatedly 

exchanging adjacent elements, if necessary. When no exchanges are required, the 

file is sorted. 

This is the simplest technique among all sorting algorithms. 

Algorithm: Sequential-Bubble-Sort (A)  

fori← 1 to length [A] do  

for j ← length [A] down-to i +1 do  

   if A[A] < A[j - 1] then  

      Exchange A[j] ↔ A[j-1]  

Implementation 

voidbubbleSort(int numbers[], intarray_size) {  

   inti, j, temp;  



   for (i = (array_size - 1); i >= 0; i--)  

   for (j = 1; j <= i; j++)  

      if (numbers[j - 1] > numbers[j]) {  

         temp = numbers[j-1];  

         numbers[j - 1] = numbers[j];  

         numbers[j] = temp;  

      }  

}  

Analysis 

Here, the number of comparisons are 

1 + 2 + 3 +...+ (n - 1) = n(n - 1)/2 = O(n2) 

Clearly, the graph shows the n2 nature of the bubble sort. 

In this algorithm, the number of comparison is irrespective of the data set, i.e. 

whether the provided input elements are in sorted order or in reverse order or at 

random. 

Memory Requirement 

From the algorithm stated above, it is clear that bubble sort does not require extra 

memory. 

Example 

Unsorted list: 
5 2 1 4 3 7 6 

 

, 

 

 

Insertion Sort 

Insertion sort is a very simple method to sort numbers in an ascending or 

descending order. This method follows the incremental method. It can be 

compared with the technique how cards are sorted at the time of playing a game. 

The numbers, which are needed to be sorted, are known as keys. Here is the 

algorithm of the insertion sort method. 

Algorithm: Insertion-Sort(A)  

for j = 2 to A.length  



   key = A[j]  

   i = j – 1  

   while i > 0 and A[i] > key  

      A[i + 1] = A[i]  

      i = i -1  

   A[i + 1] = key  

Analysis 

Run time of this algorithm is very much dependent on the given input. 

If the given numbers are sorted, this algorithm runs in O(n) time. If the given 

numbers are in reverse order, the algorithm runs in O(n2) time. 

Example 

Unsorted list: 
2 13 5 18 14 

 

1st iteration: 

Key = a[2] = 13 

a[1] = 2 < 13 

Swap, no swap 
2 13 5 18 14 

 

2nd iteration: 

Key = a[3] = 5 

a[2] = 13 > 5 

Swap 5 

and 13 

2 5 13 18 14 

 

Next, a[1] = 2 < 13 

        
2 5 13 18 14 

 

3rd iteration: 

Key = a[4] = 18 

a[3] = 13 < 18, 



a[2] = 5 < 18, 

a[1] = 2 < 18 

Swap, no 

swap 

2 5 13 18 14 

 

4th iteration: 

Key = a[5] = 14 

a[4] = 18 > 14 

Swap 18 and 

14 

2 5 13 14 18 

 

Next, a[3] = 13 < 14, 

a[2] = 5 < 14, 

a[1] = 2 < 14 

So, no 

swap 

2 5 13 14 18 

 

Finally, 

the sorted list is 
2 5 13 14 18 

 

 

 

 

Selection Sort 

This type of sorting is called Selection Sort as it works by repeatedly sorting 

elements. It works as follows: first find the smallest in the array and exchange it 

with the element in the first position, then find the second smallest element and 

exchange it with the element in the second position, and continue in this way until 

the entire array is sorted. 

Algorithm: Selection-Sort (A)  

fori ← 1 to n-1 do  

   min j ← i;  



   min x ← A[i]  

   for j ←i + 1 to n do  

      if A[j] < min x then  

         min j ← j  

         min x ← A[j]  

   A[min j] ← A [i]  

   A[i] ← min x  

Selection sort is among the simplest of sorting techniques and it works very well 

for small files. It has a quite important application as each item is actually moved 

at the most once. 

Section sort is a method of choice for sorting files with very large objects 

(records) and small keys. The worst case occurs if the array is already sorted in a 

descending order and we want to sort them in an ascending order. 

Nonetheless, the time required by selection sort algorithm is not very sensitive to 

the original order of the array to be sorted: the test if A[j] < min x is executed 

exactly the same number of times in every case. 

Selection sort spends most of its time trying to find the minimum element in the 

unsorted part of the array. It clearly shows the similarity between Selection sort 

and Bubble sort. 

 Bubble sort selects the maximum remaining elements at each stage, but 

wastes some effort imparting some order to an unsorted part of the array. 

 Selection sort is quadratic in both the worst and the average case, and 

requires no extra memory. 

For each i from 1 to n - 1, there is one exchange and n - i comparisons, so there is 

a total of n - 1 exchanges and 

(n − 1) + (n − 2) + ...+ 2 + 1 = n(n − 1)/2 comparisons. 

These observations hold, no matter what the input data is. 

In the worst case, this could be quadratic, but in the average case, this quantity 

is O(n log n). It implies that the running time of Selection sort is quite 

insensitive to the input. 

Implementation 

Void Selection-Sort(int numbers[], int array_size) {  

   int i, j;  

   int min, temp;   

   for (i = 0; I < array_size-1; i++) {  



      min = i;  

      for (j = i+1; j < array_size; j++)  

         if (numbers[j] < numbers[min])  

            min = j;  

      temp = numbers[i];  

      numbers[i] = numbers[min];  

      numbers[min] = temp;  

   }  

}  

Example 

Unsorted list: 
5 2 1 4 3 

 

1st iteration: 

Smallest = 5 

2 < 5, smallest = 2 

1 < 2, smallest = 1 

4 > 1, smallest = 1 

3 > 1, smallest = 1 

Swap 5 and 1 
1 2 5 4 3 

 

2nd iteration: 

Smallest = 2 

2 < 5, smallest = 2 

2 < 4, smallest = 2 

2 < 3, smallest = 2 

No Swap 
1 2 5 4 3 

 

3rd iteration: 

Smallest = 5 



4 < 5, smallest = 4 

3 < 4, smallest = 3 

Swap 5 and 3 
1 2 3 4 5 

 

4th iteration: 

Smallest = 4 

4 < 5, smallest = 4 

No Swap 
1 2 3 4 5 

 

Finally, 

the sorted list is 
1 2 3 4 5 

 

 

Quick Sort 

It is used on the principle of divide-and-conquer. Quick sort is an algorithm of 

choice in many situations as it is not difficult to implement. It is a good general 

purpose sort and it consumes relatively fewer resources during execution. 

Advantages 

 It is in-place since it uses only a small auxiliary stack. 

 It requires only n (log n) time to sort n items. 

 It has an extremely short inner loop. 

 This algorithm has been subjected to a thorough mathematical analysis, a 

very precise statement can be made about performance issues. 

Disadvantages 

 It is recursive. Especially, if recursion is not available, the implementation is 

extremely complicated. 

 It requires quadratic (i.e., n2) time in the worst-case. 



 It is fragile, i.e. a simple mistake in the implementation can go unnoticed 

and cause it to perform badly. 

Quick sort works by partitioning a given array A[p ... r] into two non-empty sub 

array A[p ... q] and A[q+1 ... r] such that every key in A[p ... q] is less than or 

equal to every key in A[q+1 ... r]. 

Then, the two sub-arrays are sorted by recursive calls to Quick sort. The exact 

position of the partition depends on the given array and index q is computed as a 

part of the partitioning procedure. 

Algorithm: Quick-Sort (A, p, r)  

if p < r then  

   q Partition (A, p, r)  

   Quick-Sort (A, p, q)  

   Quick-Sort (A, q + r, r)  

Note that to sort the entire array, the initial call should be Quick-Sort (A, 1, 

length[A]) 

As a first step, Quick Sort chooses one of the items in the array to be sorted as 

pivot. Then, the array is partitioned on either side of the pivot. Elements that are 

less than or equal to pivot will move towards the left, while the elements that are 

greater than or equal to pivot will move towards the right. 

Partitioning the Array 

Partitioning procedure rearranges the sub-arrays in-place. 

Function: Partition (A, p, r)  

x ← A[p]  

i ← p-1  

j ← r+1  

while TRUE do  

   Repeat j ← j - 1  

   until A[j] ≤ x   

   Repeat i← i+1  

   until A[i] ≥ x   

   if i < j then   

      exchange A[i] ↔ A[j]  

   else   

      return j  



Analysis 

The worst case complexity of Quick-Sort algorithm is O(n2). However using this 

technique, in average cases generally we get the output in O(n log n) time. 

 

 

 

 

Radix Sort 

Radix sort is a small method that many people intuitively use when alphabetizing 

a large list of names. Specifically, the list of names is first sorted according to the 

first letter of each name, that is, the names are arranged in 26 classes. 

Intuitively, one might want to sort numbers on their most significant digit. 

However, Radix sort works counter-intuitively by sorting on the least significant 

digits first. On the first pass, all the numbers are sorted on the least significant 

digit and combined in an array. Then on the second pass, the entire numbers are 

sorted again on the second least significant digits and combined in an array and so 

on. 

Algorithm: Radix-Sort (list, n)  

shift = 1  

for loop = 1 to keysize do  

   for entry = 1 to n do  

      bucketnumber = (list[entry].key / shift) mod 10  

      append (bucket[bucketnumber], list[entry])  

   list = combinebuckets()  

   shift = shift * 10  

Analysis 

Each key is looked at once for each digit (or letter if the keys are alphabetic) of 

the longest key. Hence, if the longest key has m digits and there are n keys, radix 

sort has order O(m.n). 

However, if we look at these two values, the size of the keys will be relatively 

small when compared to the number of keys. For example, if we have six-digit 

keys, we could have a million different records. 

Here, we see that the size of the keys is not significant, and this algorithm is of 

linear complexity O(n). 



Example 

Following example shows how Radix sort operates on seven 3-digits number. 

Input 1st Pass 2nd Pass 3rd Pass 

329 720 720 329 

457 355 329 355 

657 436 436 436 

839 457 839 457 

436 657 355 657 

720 329 457 720 

355 839 657 839 

In the above example, the first column is the input. The remaining columns show 

the list after successive sorts on increasingly significant digits position. The code 

for Radix sort assumes that each element in an array A of n elements has d digits, 

where digit 1 is the lowest-order digit and d is the highest-order digit. 

 

                                  

 

 

 

 



                                            UNIT 5 

 

      Backtracking  

                        i) EightQueens Problem  

ii)  Graph Coloring 

 iii)Hamilton Cycles 

 iv)Knapsack Problem   

EIGHT QUEENS PROBLEM: 

                                                     

 

 

    

 

 

 

 

 

 

 

            

 

 

 

 



 

 

 

 

 

 

The first solution: 

             Consider every possible  placements 

 

 

 

Second solution idea: 

• Don’t place 2 queens in the same row. 

– Now how many positions must be checked?Represent a 

positioning as a vector [x1, …, x8] Where each element is an integer 

1, …, 8. 

nn  88  16, 777, 216 

Third solution idea: 

•         Don’t place 2 queens in the same row or in the 
same column. 

• Generate all permutations of (1,2…8) Now how many positions must 
be checked 



 

 

 

 

 

 

 

                                  (1,2,3,4,5,6,7,8) 

 

 

 

 

 

 

 

 

 

 

 

                                          (1.2.3.4.5.8.6.7) 



Third Solution Idea 

• Don’t place 2 queens in the same row or in the 
same column. 

• Generate all permutations of (1,2…8) 

• – Now how many positions must be checked? We went from 

C(n2, n) to nn to n! 

– And we’re happy about it! 

 
• We applied explicit constraints to shrink our search space. 

 
 

        N!=8!=40,320 

 

 

Eight queens problem – Place 

Return true if a queen can be placed in Kth row and ith column otherwise false 
x[] is a global array whose first (k-1) value have been set. Abs(x) returns 
absolute value of r 

Eight Queens problem 

Two queens are placed at positions (i ,j) and (k ,l). 

They are on the same diagonal 

                                    GRAPH COLORING 



Graph Coloring Problem 

• Assign colors to the vertices of a graph so that no adjacent 
vertices share the same color 

– Vertices i, j are adjacent if there is an edge from 
vertex i to vertex j. 

• Find all m-colorings of a graph 

– Find all ways to color a graph with at most m 

colors. 

– m is called chromatic number 
 

 

The m-Coloring problem 

Finding all ways to color an undirected graph using at most m 
different colors, so that no two adjacent vertices are the same color. 

Usually the m-Coloring problem consider as a 

unique problem for each value of m. 

Planar graph 

It can be drawn in a plane in such a way that no two edges cross 
each other. 

 



 

 
 
 

 

 

 

• The top level call to m_coloring 

 

• m_coloring(0) 

• `The number of nodes in the state space tree for this 
algorithm 

 

        CORRESPONDED PLAN GRAPH     

 53 



 

This algorithm was formed using recursive backtracking schema. The graph is 

represented by its boolean adjacency matrix G[1:n,1:n]. All assignment of 
1,2..,m to the vertices of the graph such that adjacent vertices are assigned 
distinct integer are printed. K is the index of the next vertex to color 

1. Algorithm mcoloring(k) 

2. { repeat 

3. { // generate all legal 
assignment for x[k] 



4. nextvalue(k); //assign to x[k] a legal value 

5. If (x[k] = 0 ) then return ; //no new color possible 

7. If ( k = n) then // at most m color have been used to 
color the n vertices 

8. Write (x[1 : n]; 

9. Else mcoloring(k+1) 

10. } until (false) 

11. } 

 

 
X[1]…x[k-1] have been assigned integer value in the range [1,m] such that 
adjacent vertices have distinct integer. A value for x[k] is determined in the 
range [0,m]. X[k] is assigned the next highest numbered color while 
maintaining distinctness from the adj. vertices of vertex k. if no such color 
exists, then x[k] is 0 

1. Algorithm Nextvalue(k) 

2. { repeat 

3. { X [k]:= (x[k] +1) mod (m+1) ;
//next higher color 

4. If ( x[k] = 0) then return; // all 
colors have been used 

5. for j := 1 to n do 

6. {  // check if this color is distinct from 

adjacent colors 7.  If ((G[k, j] != 0) and (x[k] = x[ j ] 

)) 



8. //if (k , j)is and edge if adj. vertices have the 

same color. 

9. then break; 

10. } 

11. If (j = n+1) then return; //new color 
found 

12. } until (false); //otherwise try 
to find another color 

} 

 

Hamiltonian cycle (HC) 

Definitions 

• Hamiltonian cycle (HC): is a cycle which passes once and exactly 
once through every vertex of G and returns to starting position 

•  Hamiltonian path: is a path which passes once and exactly once 
through every vertex of G (G can be digraph). 

• A graph is Hamiltonian iff a Hamiltonian cycle (HC) exists. 

• Hamiltonian Circuit 

• [v1, v2, v8, v7, v6, v5, v4, v3, v2] 
 

 

 



 

 
 
 

               

 

 

 

                        NO HAMILTON CIRCUITS  

BACKTRACKM ALGORITHM: 

• Search all the potential solutions 

• Employ pruning of some kind to restrict the amount of 
researching 

• Advantage: 

Find all solution, can decide HC exists or not 

• Disadvantage 

Worst case, needs exponential time. Normally, take a long time 

APPLICATION: 

• Hamiltonian cycles in fault random geometric network 

• In a network, if Hamiltonian cycles exist, the fault 
tolerance is better. 

                   HEURISTIC ALGORITHM 

 

{ 

ADA  Unit -3
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Find new unvisited node. 

If found { Extend path P and pruning on the graph. If 
this choice does not permit HC, remove the 
extended node. 

} else 

Transform Path. Try all possible endpoints of this path 

Form cycle. Try to find HC 

This algorithm uses the recursive formulation of backtracking to 

find all the hamiltonion cycles of a graph. The graph is stored as 
an adjacency matrix G[1:n, 1:n]. All cycles begins at 
node 1. 

 

{ 

3. repeat 

4. {
//generate values 
for x[k] 

5. Nextvalue(k); //assign a legal 
next value to x[k] 

6. if ( x[k] = 0 ) then return 

7. if (k = n) then write ( x[1:n]); 

8. else Hamiltonian(k + 1); 

9. } until(false); 

10. } 
Knapsack: 



                 Given a set of items, each with a weight and a value, determine 
a subset of items to include in a collection so that the total weight is less 
than or equal to a given limit and the total value is as large as possible. 

The knapsack problem is in combinatorial optimization problem. It appears 
as a subproblem in many, more complex mathematical models of real-
world problems. One general approach to difficult problems is to identify 
the most restrictive constraint, ignore the others, solve a knapsack 
problem, and somehow adjust the solution to satisfy the ignored 
constraints. 

Applications 

In many cases of resource allocation along with some constraint, the 
problem can be derived in a similar way of Knapsack problem. Following is 
a set of example. 

 Finding the least wasteful way to cut raw materials 

 portfolio optimization 

 Cutting stock problems 

Problem Scenario 

A thief is robbing a store and can carry a maximal weight of W into his 
knapsack. There are n items available in the store and weight of ith item 
is wi and its profit is pi. What items should the thief take? 

In this context, the items should be selected in such a way that the thief 
will carry those items for which he will gain maximum profit. Hence, the 
objective of the thief is to maximize the profit. 

Based on the nature of the items, Knapsack problems are categorized as 

 Fractional Knapsack 

 Knapsack 

Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can 
select fractions of items. 

According to the problem statement, 

 There are n items in the store 



 Weight of ith item wi>0wi>0 
 Profit for ith item pi>0pi>0 and 

 Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller 
pieces. So, the thief may take only a fraction xi of ith item. 

0⩽xi⩽10⩽xi⩽1 

The ith item contributes the weight xi.wixi.wi to the total weight in the 
knapsack and profit xi.pixi.pi to the total profit. 

Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise 
we could add a fraction of one of the remaining items and increase the 
overall profit. 

Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value 
of piwipiwi, so that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to 

store the fraction of items. 
Algorithm: Greedy-Fractional-Knapsack (w[1..n], 

p[1..n], W)  

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  

      x[i] = (W - weight) / w[i]  

      weight = W  

      break  



return x 

Analysis 

If the provided items are already sorted into a decreasing order of piwipiwi, 
then the whileloop takes a time in O(n); Therefore, the total time including 
the sort is in O(n logn). 

Example 

Let us consider that the capacity of the knapsack W = 60 and the list of 
provided items are shown in the following table − 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

As the provided items are not sorted based on piwipiwi. After sorting, the 
items are as shown in the following table. 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 



Ratio (piwi)(piwi) 10 7 6 5 

Solution 

After sorting all the items according to piwipiwi. First all of B is chosen as 
weight of B is less than the capacity of the knapsack. Next, item A is 
chosen, as the available capacity of the knapsack is greater than the 
weight of A. Now, C is chosen as the next item. However, the whole item 
cannot be chosen as the remaining capacity of the knapsack is less than 
the weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, 
no more item can be selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any 
different combination of items. 

 
BRANCH AND BOUND: 
 

Traveling Salesman Problem using Branch And Bound 

Given a set of cities and distance between every pair of cities, the problem 

is to find the shortest possible tour that visits every city exactly once and 

returns to the starting point. 

 
For example, consider the graph shown in figure on right side. A TSP tour in 

the graph is 0-1-3-2-0. The cost of the tour is 10+25+30+15 which is 80. 

https://tutorialspoint.dev/image/TSP.png


We have discussed following solutions 

1) Naive and Dynamic Programming 

2) Approximate solution using MST 

  

 Branch and Bound Solution 

As seen in the previous articles, in Branch and Bound method, for current 

node in tree, we compute a bound on best possible solution that we can 

get if we down this node. If the bound on best possible solution itself is 

worse than current best (best computed so far), then we ignore the subtree 

rooted with the node. 

Note that the cost through a node includes two costs. 

1) Cost of reaching the node from the root (When we reach a node, we 

have this cost computed) 

2) Cost of reaching an answer from current node to a leaf (We compute a 

bound on this cost to decide whether to ignore subtree with this node or 

not). 

 In cases of a maximization problem, an upper bound tells us the 

maximum possible solution if we follow the given node. For example in 0/1 

knapsack we used Greedy approach to find an upper bound. 

 In cases of a minimization problem, a lower bound tells us the minimum 

possible solution if we follow the given node. For example, in Job 

Assignment Problem, we get a lower bound by assigning least cost job to a 

worker. 

In branch and bound, the challenging part is figuring out a way to compute 

a bound on best possible solution. Below is an idea used to compute 

bounds for Traveling salesman problem. 

Cost of any tour can be written as below. 

Cost of a tour T = (1/2) * &Sum; (Sum of cost of two edges 

                              adjacent to u and in the 

                              tour T)  

                   where u ∈ V 

https://tutorialspoint.dev/slugresolver/travelling-salesman-problem-set-1/
https://tutorialspoint.dev/slugresolver/travelling-salesman-problem-set-2-approximate-using-mst/
https://tutorialspoint.dev/slugresolver/branch-and-bound-set-2-implementation-of-01-knapsack/
https://tutorialspoint.dev/slugresolver/branch-and-bound-set-2-implementation-of-01-knapsack/
https://tutorialspoint.dev/slugresolver/branch-bound-set-4-job-assignment-problem/
https://tutorialspoint.dev/slugresolver/branch-bound-set-4-job-assignment-problem/


For every vertex u, if we consider two edges through it in 
T, 

and sum their costs.  The overall sum for all vertices would 

be twice of cost of tour T (We have considered every edge  

twice.) 

 

(Sum of two tour edges adjacent to u) >= (sum of minimum 
weight 

                                          two edges adjacent 
to 

                                          u) 

 

Cost of any tour >=  1/2) * &Sum; (Sum of cost of two 
minimum 

                              weight edges adjacent to u)  

                   where u ∈ V 

 

For example, consider the above shown graph. Below are minimum cost 

two edges adjacent to every node. 

Node     Least cost edges   Total cost             

0     (0, 1), (0, 2)            25 

1     (0, 1), (1, 3)         35 

2    (0, 2), (2, 3)            45 

3     (0, 3), (1, 3)            45 

 



Thus a lower bound on the cost of any tour =  

         1/2(25 + 35 + 45 + 45) 

       = 75 

Refer this for one more example. 

Now we have an idea about computation of lower bound. Let us see how to 

how to apply it state space search tree. We start enumerating all possible 

nodes (preferably in lexicographical order) 

1. The Root Node: Without loss of generality, we assume we start at vertex 

“0” for which the lower bound has been calculated above. 

Dealing with Level 2: The next level enumerates all possible vertices we 

can go to (keeping in mind that in any path a vertex has to occur only once) 

which are, 1, 2, 3… n (Note that the graph is complete). Consider we are 

calculating for vertex 1, Since we moved from 0 to 1, our tour has now 

included the edge 0-1. This allows us to make necessary changes in the 

lower bound of the root. 

Lower Bound for vertex 1 =  

   Old lower bound - ((minimum edge cost of 0 +  

                    minimum edge cost of 1) / 2)  

                  + (edge cost 0-1) 

How does it work? To include edge 0-1, we add the edge cost of 0-1, and 

subtract an edge weight such that the lower bound remains as tight as 

possible which would be the sum of the minimum edges of 0 and 1 divided 

by 2. Clearly, the edge subtracted can’t be smaller than this. 

Dealing with other levels: As we move on to the next level, we again 

enumerate all possible vertices. For the above case going further after 1, we 

check out for 2, 3, 4, …n. 

Consider lower bound for 2 as we moved from 1 to 1, we include the edge 

1-2 to the tour and alter the new lower bound for this node. 

http://lcm.csa.iisc.ernet.in/dsa/node187.html


 

 

 

Lower bound(2) =  

     Old lower bound - ((second minimum edge cost of 1 +  

                         minimum edge cost of 2)/2) 

                     + edge cost 1-2) 

              
 
0/1 KNAPSACK PROBLEM:                                                   

 

In this tutorial, earlier we have discussed Fractional Knapsack problem 
using Greedy approach. We have shown that Greedy approach gives an 
optimal solution for Fractional Knapsack. However, this chapter will cover 
0-1 Knapsack problem and its analysis. 

In 0-1 Knapsack, items cannot be broken which means the thief should 
take the item as a whole or should leave it. This is reason behind calling it 
as 0-1 Knapsack. 

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where 
other constraints remain the same. 

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach 
does not ensure an optimal solution. In many instances, Greedy approach 
may give an optimal solution. 

The following examples will establish our statement. 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items 
are as shown in the following table. 

Without considering the profit per unit weight (pi/wi), if we apply Greedy 
approach to solve this problem, first item A will be selected as it will 
contribute maximum profit among all the elements. 



After selecting item A, no more item will be selected. Hence, for this given 
set of items total profit is 24. Whereas, the optimal solution can be 
achieved by selecting items, B and C, where the total profit is 18 + 18 = 
36. 

Example-2 

Instead of selecting the items based on the overall benefit, in this example 
the items are selected based on ratio pi/wi. Let us consider that the 
capacity of the knapsack is W = 60 and the items are as shown in the 
following table. 

Using the Greedy approach, first item A is selected. Then, the next 
item B is chosen. Hence, the total profit is 100 + 280 = 380. However, the 
optimal solution of this instance can be achieved by selecting 
items, B and C, where the total profit is 280 + 120 = 400. 

Hence, it can be concluded that Greedy approach may not give an optimal 
solution. 

To solve 0-1 Knapsack, Dynamic Programming approach is required. 

Problem Statement 

A thief is robbing a store and can carry a maximal weight of W into his 
knapsack. There are n items and weight of ith item is wi and the profit of 
selecting this item is pi. What items should the thief take? 

Dynamic-Programming Approach 

Let i be the highest-numbered item in an optimal solution S for W dollars. 
Then S' = S - {i} is an optimal solution for W - wi dollars and the value to 
the solution S is Vi plus the value of the sub-problem. 

We can express this fact in the following formula: define c[i, w] to be the 
solution for items 1,2, … , i and the maximum weight w. 

The algorithm takes the following inputs 

 The maximum weight W 

 The number of items n 

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W)  

for w = 0 to W do  



   c[0, w] = 0  

for i = 1 to n do  

   c[i, 0] = 0  

   for w = 1 to W do  

      if wi ≤ w then  

         if vi + c[i-1, w-wi] then  

            c[i, w] = vi + c[i-1, w-wi]  

         else c[i, w] = c[i-1, w]  

      else  

         c[i, w] = c[i-1, w]  

The set of items to take can be deduced from the table, starting at c[n, 
w] and tracing backwards where the optimal values came from. 

If c[i, w] = c[i-1, w], then item i is not part of the solution, and we continue 
tracing with c[i-1, w]. Otherwise, item i is part of the solution, and we 
continue tracing with c[i-1, w-W]. 

Analysis 

This algorithm takes θ(n, w) times as table c has (n + 1).(w + 1) entries, 
where each entry requires θ(1) time to compute. 

Subsequence 

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>. 

A sequence Z = <z1, z2, z3, z4, …,zm> over S is called a subsequence of S, 
if and only if it can be derived from S deletion of some elements. 

Common Subsequence 

Suppose, X and Y are two sequences over a finite set of elements. We 
can say that Z is a common subsequence of X and Y, if Z is a 
subsequence of both X and Y. 

Longest Common Subsequence 

If a set of sequences are given, the longest common subsequence 
problem is to find a common subsequence of all the sequences that is of 
maximal length. 

The longest common subsequence problem is a classic computer science 
problem, the basis of data comparison programs such as the diff-utility, 
and has applications in bioinformatics. It is also widely used by revision 



control systems, such as SVN and Git, for reconciling multiple changes 
made to a revision-controlled collection of files. 

Naïve Method 

Let X be a sequence of length m and Y a sequence of length n. Check for 
every subsequence of X whether it is a subsequence of Y, and return the 
longest common subsequence found. 

There are 2m subsequences of X. Testing sequences whether or not it is a 
subsequence of Y takes O(n) time. Thus, the naïve algorithm would 
take O(n2m) time 

 SUM OF SUBSETS: 

                  The Subset-Sum Problem is to find a subset's' of the 
given set S = (S1 S2 S3...Sn) where the elements of the set S are 

n positive integers in such a manner that s'∈S and sum of the 

elements of subset's' is equal to some positive integer 'X.' 

The Subset-Sum Problem can be solved by using the backtracking 

approach. In this implicit tree is a binary tree. The root of the 

tree is selected in such a way that represents that no decision is 

yet taken on any input. We assume that the elements of the 

given set are arranged in increasing order: 

S1 ≤ S2 ≤ S3... ≤ Sn 

The left child of the root node indicated that we have to include 

'S1' from the set 'S' and the right child of the root indicates that 
we have to execute 'S1'. Each node stores the total of the partial 

solution elements. If at any stage the sum equals to 'X' then the 

search is successful and terminates. 

The dead end in the tree appears only when either of the two 

inequalities exists: 

o The sum of s' is too large i.e. 

s'+ Si + 1 > X 

o The sum of s' is too small i.e. 



 

Example: Given a set S = (3, 4, 5, 6) and X =9. Obtain the 

subset sum using Backtracking approach. 

Solution: 

1. Initially S = (3, 4, 5, 6) and X =9.   

2.           S'= (∅)   

 
 

The implicit binary tree for the subset sum problem is shown as 

fig: 

 
 

The number inside a node is the sum of the partial solution 

elements at a particular level. 

Thus, if our partial solution elements sum is equal to the positive 
integer 'X' then at that time search will terminate, or it continues 

if all the possible solution needs to be obtained. 



Let, S = {S1 …. Sn} be a set of n positive integers, then we have to find a 
subset whose sum is equal to given positive integer d.It is always 
convenient to sort the set’s elements in ascending order. That is, S1 ≤ S2 
≤…. ≤ Sn 

Algorithm: 

Let, S is a set of elements and m is the expected sum of subsets. Then: 

1. Start with an empty set. 
2. Add to the subset, the next element from the list. 
3. If the subset is having sum m then stop with that subset as solution. 
4. If the subset is not feasible or if we have reached the end of the set 

then backtrack through the subset until we find the most suitable 
value. 

5. If the subset is feasible then repeat step 2. 
6. If we have visited all the elements without finding a suitable subset 

and if no backtracking is possible then stop without solution. 

Example: Solve following problem and draw portion of state space tree 
M=30,W ={5, 10, 12, 13, 15, 18} 

Solution: 

 

The state space tree is shown as below in figure. {5, 10, 12, 13, 15, 18} 



 

 


