
DISTRIBUTED OPERATING SYSTEMS

OBJECTIVES :

• DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

• DCE Components

• DCE Cells

• Computer Networks

• COMMUNICATION PROTOCOLS

• INTERNETWORKING

• ATM TECHNOLOGY

Dr. P.Selvakumar

Asssistan Professor

Department of Computer Science

Government Arts College

Ariyalur – 621 703

INTRODUCTION TO DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

 Ethernet, IEEE Token Ring, the Internet Protocol suite, and the Internet are

 presented as case studies of networking technologies in Chapter 2.

 The 4.3BSD UNIX interprocess communication mechanism is presented as a case

 study of message-passing technology in Chapter 3.

 SUN RPC and DeE RPC are presented as case studies of Remote Procedure Call

 (RPC) technology in Chapter 4.

 • IVY and Munin are presented as case studies of Distributed Shared Memory

 (DSM) technology in Chapter 5.

 • DCE Distributed Time Service (DTS) is presented as a case study of clock

 synchronization technology in Chapter 6.

 • The DCE threads package is presented as a case study of threads technology in

 Chapter 8.

 • DeE Distributed File Service (DFS) is presented as a case study of distributed file

 system technology in Chapter 9.

 • The various components of DeE naming facility are presented as case studies of

 naming technology in Chapter 10.

 • The Kerberos authentication system and DeE Security Service are presented as

 case studies of security technology in Chapter 11.

What is DCE ?

DCE , it is an integrated set of services and tools that can be installed as a coherent
environment on top of existing operating systems and serve as a platform for building
and running distributed applications.

A primary goal of DCE is vendor independence. It runs on many different kinds of
computers, operating systems, and networks produced by different vendors. For
example, some operating systems to which DCE can be easily ported include OSF/I, AIX,
DOMAIN OS, ULTRIX, HP-UX, SINIX, SunOS, UNIX System V, VMS, WINDOWS, and OS/2.

As shown in Figure 1.7, DCE is a middleware software layered between the DCE

applications layer and the operating system and networking layer. The basic idea is to
take a collection of existing machines (possibly from different vendors), interconnect
them by a communication network, add the DCE software platform on top of the native
operating systems of the machines, and then be able to build and run distributed
applications.

DCE Components :
• The main components of DeE are as follows:
1. Threads package. It provides a simple programming model for building
concurrent applications. It includes operations to create and control multiple threads of
execution in a single process and to synchronize access to global data within an
application. Details are given in Chapter 8.
2. Remote Procedure Call (RPC)facility. It provides programmers with a number of
powerful tools necessary to build client-server applications. In fact, the DCE RPC facility
is the basis for all communication in DCE because the programming model underlying all
of DCE is the client-server model. It is easy to use, is network- and protocol-independent,
provides secure communication between a client and a server, and hides differences in
data requirements by automatically converting data to the appropriate forms needed by
clients and servers. Details are given in Chapter 4.
3. Distributed lime Service (DTS). It closely synchronizes the clocks of all the
computers in the system. It also permits the use of time values from external time sources,
such as those of the u.s. National Institute for Standards and Technology (NIST), to
synchronize the clocks of the computers in the system with external time. This facility can
also be used to synchronize the clocks of the computers of one distributed environment
with the clocks of the computers of another distributed environment. Details are given in
Chapter 6.
4. Name services. The name services of DCE include the Cell Directory Service
(CDS), the Global Directory Service (GDS), and the Global Directory Agent (GDA).
These services allow resources such as servers, files, devices, and so on, to be uniquely
named and accessed in a location-transparent manner. Details are given in Chapter 10.

5. Security Service. It provides the tools needed for authentication and authorization
to protect system resources against illegitimate access. Details are given in Chapter 11.
6. Distributed File Service (DFS). It provides a system wide file system that has such
characteristics as location transparency, high performance, and high availability. A unique
feature of DeE DFS is that it can also provide file services to clients of other file systems.
Details are given in Chapter 9.
The DCE components listed above are tightly integrated. It is difficult to give a
pictorial representation of their interdependencies because they are recursive. For
example, the name services use RPC facility for internal communication among its
Sec. 1.7 • Introduction to Distributed Computing Environment (DeE) 37
various servers, but the RPC facility uses the name services to locate the destination.
Therefore, the interdependencies of the various DeE components can be best depicted in
tabular form, as shown in Figure 1.8.

DCE Cells

In a DCE system, a cell is a group of users, machines, or other resources that typically have a
common purpose and share common DCE services. The minimum cell configuration
requires a cell directory server, a security server, a distributed time server, and one or more
client machines. Each DCE client machine has client processes for security service, cell
directory service, distributed time service, RPC facility, and threads facility.
four factors :
1. Purpose. The machines of users working on a common goaL should be put in the same
cell, as they need easy access to a common set of system resources. That is, users of
machines in the same cell have closer interaction with each other than with users of
machines in different cells.

2. Administration. Each system needs an administrator to register new users in the system
and to decide their access rights to the system's resources.To perform his or her job
properly, an administrator must know the users and the resourcesof the system. Therefore,
to simplify administration jobs, all the machines and their users that are known to and
manageable by an administrator should be put in a single cell.

3. Security. Machines of those users who have greater trust in each other should be put in
the same cell. That is, users of machines of a cell trust each other more than they trust the
users of machines of other cells. In such a design, cell boundaries act like firewalls in the
sense that accessing a resource that belongs to another cell requires more sophisticated
authentication than accessing a resource that belongs to a user's own cell.

4. Overhead. Several DeE operations, such as name resolution and user authentication,
incur more overhead when they are performed between cells than when they are
performed within the same cell.

Computer Networks
A computer network is a communication system that links end systems by communication

lines and software protocols to exchange data between two processes running on different

end systems of the network. The end systems are often referred to as nodes, sites, hosts,

computers, machines, and so on. The nodes may vary in size and function. Sizewise, a

node may be a small microprocessor, a workstation, a minicomputer, or a large

supercomputer. Functionwise, a node may be a dedicated system (such as a print server or

a file server) without any capability for interactive users, a single-user personal computer,

or a general-purpose time-sharing system.

NETWORKS TYPES

Networks arc broadly classified into two types: local area networks (LANs) and wide-area networks
(WANs). differentiate between these two types of networks are as follows :

1. Geographic distribution.

2. Data rate. Data transmission rates are usually much higher in LANs than in WANs.

 3. Error rate. Local area networks generally experience fewer than WAN

4. Communication link. The most common communication links used in LANs are twisted pair, coaxial
cable, and fiber optics. On the other hand, since the sites in a WAN are physically distributed over a large
geographic area, the communication links used are by default relatively slow and unreliable. WANs are
telephone lines, microwave links, and satellite Channels.

5. Ownership. A LAN is owned by a single. A WAN formed by interconnecting multiple LANs each of which
may belong to a different organization

6. Communication cost. The overall communication costs of a LAN is usually much lower than that of a
WAN.

LAN TECHNOLOGIES

This section presents a description of topologies, principles of operation of popular LANs.

LAN Topologies :

The two commonly used network topologies for constructing LANs are multiaccess bus and
ring. In a simple multiaccess bus network, all sites are directly connected to a single
transmission medium (called the bus) that spans the whole length of the network (Fig. 2.1).

In such a network, two or more simple multiaccess
bus networks are interconnected by using repeaters
(Fig. 2.2). Repeaters are hardware devices used to
connect cable segments. They simply amplify and
copy electric signals from one segment of a network
to its next segment.

In a ring network, each site is connected to exactly two other sites so that a loop is

formed (Fig. 2.3). A separate link is used to connect two sites. The links are
interconnected by using repeaters. Data is transmitted in one direction around the
ring by signaling between sites.

The connection cost of a ring network is low and grows only linearly with the

increase in number of sites. The average communication cost is directly proportional
to the number of sites in the network. If there are n sites, at most (n-l) links have to
be traversed by a message to reach its destination.

Medium-Access Control Protocols :

InIn case of both multi access bus and ring networks, are needed in a multi access
environment to control the access to a shared channel. These schemes are known as

medium-access control protocols.

• The CSMA/CD Protocol : The CSMA/CD scheme employs decentralized control of the
shared medium, In this scheme is comprised of the following three mechanisms :

1.Carrier sense and defer mechanism.

2. Collision detection mechanism.

3. Controlled retransmission mechanism.

• The Token Ring Protocol : This scheme also employs decentralized control of the
shared medium. In this scheme, access to the shared medium is controlled by
using a single token that is circulated among the sites in the system. A token is a
special type of message (having a unique bit pattern) that entitles its holder to
use the shared medium for transmitting its messages.

• The Slotted-Ring Protocol : In this scheme, a constant number of fixed-length
message slots continuously circulate around the ring. Each slot has two parts-
control and data. The control part usually has fields to specify whether the slot is
full or empty, the source and destination addresses of the message contained in
a full slot, and whether the message in it was successfully received at the
destination. On the other hand, the data part can contain a fixed-length message
data.

WAN Technologies
WAN, computers located in the same country may be interconnected by coaxial cables
(telephone lines), but communications satellites may be used to interconnect two
computers that are located in different countries. The computers of a WAN are not
connected directly to the communication channels but are connected to hardware
devices caned packet-switching exchanges (PSEs), which are special-purpose computers
dedicated to the task of data communication. Therefore, the communication channels
of the network interconnect the PSEs, which actually perform the task of data
communication across the network (Fig. 2.6).

We saw that in a WAN communication is achieved by
transmitting a packet from its source computer to its destination
computer through two or more PSEs. The PSEs provide switching
facility to move a packet from one PSE to another until the
packet reaches its destination. The two most commonly used
schemes are circuit switching and packet switching.

circuit switching : a physical circuit is constructed between the sender
and receiver computers during the circuit establishment phase.ex :
Public Switched Telephone Network (PSTN).

packet switching : sender-receiver pair only while transmitting a
single packet of the message of that pair. Ex : X.25 public packet
network and the Internet.

COMMUNICATION PROTOCOLS
The term protocol is used to refer to a set of such rules and conventions. Computer
networks are implemented using the concept of layered protocols.

network are organized into a series of layers in such a way that each layer contains
protocols for exchanging data and providing functions in a logical sense with peer
entities at other sites in the network. The terms protocol suite, protocol family, or
protocol stack are used to refer to the collection of protocols (of all layers) of a
particular network system.

Protocols for Network Systems

International Standardization Organization (ISO) has developed a reference model that
identifies seven standard layers and defines the jobs to be performed at each layer. This model
is called the Open System International Reference Model (OSl model)

The architecture of the OSI model is shown in Figure 2.7. It is a seven-layer architecture in
which a separate set of protocols is defined for each layer. Thus each layer has an independent
function and deals with one or more specific aspects of the communication.

Example of Message Transfer in the OSI Model.

To illustrate the functions of the various layers of the OSI model, let us consider a simple
example of message transmission. With reference to Figure 2.8,

IEEE 802 LAN Reference Model

As shown in the figure, the lowest three layers
of the IEEE 802 LAN model are the physical
layer, the medium-access-control layer, and
the logical-link-control layer. The physical layer
defines interface protocols for the following
four types of media that are commonly used
in LANs: baseband, broadband, fiber optics,
and twisted pair. As the name implies, the
medium-access-control layer deals with the
medium-access-control protocols for LANs.

The Internet Protocol Suite

FTP (File Transfer Protocol
TFTP (Trivial File TransferProtocol)
SMTP (Simple Mail Transfer Protocol)
DNS (Domain Name Service)

TCP (Transport Control Protocol)
UDP (User Datagram Protocol)

IP (Internet Protocol)
ICMP (Internet Control Message
Protocol)

ARP (Address Resolution Protocol)
RARP (Reverse ARP)

SLIP (Serial Line Internet Protocol)

INTERNETWORKING
Interconnecting of two or more networks to form a single network is called

internetworking, and the resulting network is called an internetwork. Therefore, a
WAN of multiple LANs is an internetwork. Internetworks are often heterogeneous
networks composed of several network segments that may differ in topology and
protocol.

The three important internetworking issues are how to interconnect multiple

(possibly heterogeneous) networks into a single network, which communication

medium to use for connecting two networks, and how to manage the resulting

internetwork.

Interconnection Technologies

Interconnection technologies enable interconnection of networks that may
possibly have different topologies and protocols. Interconnecting two networks
having the same topology and protocol is simple because the two networks can
easily communicate with each other. However, interconnecting two dissimilar
networks that have different topologies and protocols requires an internetworking
scheme that provides some common point of reference for the two networks to
communicate with each other.

Bridges
Bridges operate at the bottom two layers of the OSI model (physical and data link). Therefore,
they are used to connect networks that use the same communication protocols above the data-
link layer but mayor may not use the same protocols at the physical and data-link layers. For
example, bridges may be used to connect two networks, one of which uses fiber-optic
communication medium and the other uses coaxial cable; or one of which uses Ethernet
technology and the other uses Token Ring technology. But both networks must use the same
high-level protocols (e.g., TCP/IP or XNS) to communicate. bridges are also useful in network
partitioning.

Routers
Routers are commonly used to interconnect those network segments of large intemetworks that
use the same communication protocol. They are particularly useful in controlling traffic flow by
making intelligent routing decisions. An internetwork often uses both bridges and routers to
handle both routing and multiprotocol issues. This requirement has resulted in the design of
devices called brouters, which are a kind of hybrid of bridges and routers. They provide many of
the advantages of both bridges and routers.

Gateways
Gateways operate at the top three layers of the OSI model (session, presentation, and
application). They are the most sophisticated internetworking tools and are used for
interconnecting dissimilar networks that use different communication protocols. That is,
gateways are used to interconnect networks that are built on totally different communications
architectures.

ATM TECHNOLOGY
Asynchronous Transfer Mode (ATM) is often escribed as the future computer
networking paradigm. It is a high-speed, connection-oriented switching and
multiplexing technology that uses short, fixed-length packets (called cells) to transmit
different types of traffic simultaneously, including voice, video, and data.

Main Features of ATM Technology

• It enables high-bandwidth distributed applications

• It provides high transmission speeds for both local and wide-area networks & services

• It supports both the fundamental approaches to switching (circuit switching and

• packet switching) within a single integrated switching mechanism (called cell switching).

• It uses the concept of virtual networking to pass traffic between two locations.

• In addition to point-to-point communication in which there is a single sender and

• a single receiver.

• It enables the use of a single network to efficiently transport a wide range of multimedia
data such as text, voice, video, broadcast television, and so on.

• It is flexible in the way it grants access to bandwidth.

• It is a scalable technology.

• It has a fairly solid base of standards.

ATM Protocol Reference Model
The protocol reference model in ATM is divided into three layers-physical layer, ATM layer, and
ATM adaptation layer (AAL) (Fig. 2.12). Applications involving data, voice, and video are built on
top of these three layers.

Physical Layer
The physical layer is the bottom-most layer of the
ATM protocol suite. It is concerned with
putting bits on the wire and taking them off
again. It has two sublayers: the physical
medium dependent (PMD) sublayer and the
transmission convergence (TC) sublayer.
ATM Layer
The ATM layer handles most of the cell
processing and routing activities. These
include building the cell header, cell multiplexing
of individual connections into
composite flows of cells, cell demultiplexing of
composite flows into individual
connections, cell routing, cell payload type
marking and differentiation, cell loss
priority marking and reduction, cell reception
and header validation, and generic flow
control of cells.

ATM Adaptation Layer
The functionality of the physical and
the ATM layers of the ATM protocol
suite is not tailored to any application.
We saw that ATM can support various
types of traffic, including voice, video,
and data.

ISSUES IN IPC BY MESSAGE PASSING

A message is a block of information formatted by a sending process in such a
manner that it is meaningful to the receiving process. It consists of a fixed-
length header and a variable-size collection of typed data objects.
Address. It contains characters that uniquely identify the sending and receiving
processes in the network. Thus, this element has two parts-one part is
the sending process address and the other part is the receiving process
address.
Sequence number. This is the message identifier (ID), which is very useful
for identifying lost messages and duplicate messages in case of system
failures.
Structural information. This element also has two parts. The type part specifies
whether the data to be passed on to the receiver is included within the message or
the message only contains a pointer to the data, which is stored somewhere outside
the contiguous portion of the message. The second part of this element specifies
the length of the variable-size message data.

IPC protocol for a message-passing system, the following
important issues need to be considered:

• Who is the sender?

• Who is the receiver?

• Is there one receiver or many receivers?

• Is the message guaranteed to have been accepted by its receiver(s)?

• Does the sender need to wait for a reply?

• What should be done if a catastrophic event such as a node crash or a

communication link failure occurs during the course of communication?

• What should be done if the receiver is not ready to accept the message: Will the

message be discarded or stored in a buffer? In the case of buffering, what should

be done if the buffer is full?

• If there are several outstanding messages for a receiver, can it choose the order in

• which to service the outstanding messages?

SYNCHRONIZATION
A central issue in the communication structure is the synchronization imposed on the

communicating processes by the communication primitives. The semantics used for

synchronization may be broadly classified as blocking and non blocking types.

The synchronization imposed on the communicating processes basically depends on one of
the two types of semantics used for the send and receive primitives.

Two methods is commonly used for this purpose:

1. Polling. In this method, a test primitive is provided to allow the receiver to check

the buffer status. The receiver uses this primitive to periodically poll the kernel to check

if the message is already available in the buffer.

2. Interrupt. In this method, when the message has been filled in the buffer and is

ready for use by the receiver, a software interrupt is used to notify the receiving process.

This method permits the receiving process to continue with its execution without having

to issue unsuccessful test requests. Although this method is highly efficient and allows

maximum parallelism, its main drawback is that user-level interrupts make programming

difficult [Tanenbaum 1995].

BUFFERING
Messages can be transmitted from one process to another by copying the body of the
message from the address space of the sending process to the address space of the
receiving process. a buffer in which messages can be stored prior to the receiving
process executing specific code to receive the message.

four types of buffering strategies :

1. a null buffer (or no buffering) :

2. single-message

3. unbounded capacity.

4. finite-bound (multiple-message) buffers.

1. a null buffer (or no buffering) : In case of no buffering, there is no place to
temporarily store the message.

single-message Buffer :
The main idea behind the single-message buffer strategy is to keep the message ready for
use at the location of the receiver. The message buffer may either be located in the kernel's
address space or in the receiver process's address space.

Unbounded – Caacity Buffer :
In the asynchronous mode of communication, since a sender does not wait for the receiver
to be ready, there may be several pending messages that have not yet been accepted by
the receiver. Therefore, an unbounded-capacity message buffer that can store all
unreceived messages is needed to support asynchronous communication with the
assurance that all the messages sent to the receiver will be delivered.

4. finite-bound (multiple-message) buffers :

Unbounded capacity of a buffer is practically impossible. Therefore, in practice, systems using
asynchronous mode of communication use finite-bound buffers, also known as multiple-message
buffers. When the buffer has finite bounds, a strategy is also needed for handling the problem of
a possible buffer overflow. The buffer overflow problem can be dealt with in one of the following
two ways:

1. Unsuccessful communication. In this method, message transfers simply fail

whenever there is no more buffer space. The send normally returns an error message to the
sending process, indicating that the message could not be delivered to the receiver because the
buffer is full. Unfortunately, the use of this method makes message passing less reliable.

2. Flow-controlled communication. The second method is to use flow control, which

means that the sender is blocked until the receiver accepts some messages, thus creating space
in the buffer for new messages. This method introduces a synchronization between the sender
and the receiver and may result in unexpected deadlocks. Moreover, due to the synchronization
imposed, the asynchronous send does not operate in the truly asynchronous mode for all send
commands.

MUlTI DATAGRAM MESSAGES

Almost all networks have an upper bound on the size of data that can be
transmitted at a time. This size is known as the maximum transfer unit (MTU) of a
network.

A message whose size is greater than the MTU has to be fragmented into
multiples of the MTU, and then each fragment has to be sent separately.

Each fragment is sent in a packet that has some control information in addition to
the message data. Each packet is known as a datagram. Messages smaller than
the MTU of the network can be sent in a single packet and are known as single-
datagram messages.

On the other hand, messages larger than the MTU of the network have to be
fragmented and sent in multiple packets. Such messages are known as multi

datagram messages.

ENCODING AND DECODING OF MESSAGE DATA
A message data should be meaningful to the eceiving process. This implies that,
ideally, the structure of program objects should be preserved while they are being
transmitted from the address space of the sending process to the address space of
the receiving process.

it is very difficult to achieve this goal mainly because of two reasons:

1. An absolute pointer value loses its meaning when transferred from one process

address space to another. Therefore, such program objects that use absolute pointer
values cannot be transferred in their original form, and some other form of
epresentation must be used to transfer them.

2. Different program objects occupy varying amount of storage space. To be
meaningful, a message must normally contain several types of program objects,
such as long integers, short integers, variable-length character strings, and so on. In
this .case, to make the message meaningful to the receiver, there must be some way
for the receiver to identify which program object is stored where in the message
buffer and how much space each program object occupies.

two representations may be used for the Encoding and
Decoding of a message data:

1. In tagged representation the type of each program object along with its
value is encoded in the message. In this method, it is a simple matter for
the receiving process to check the type of each program object in the
message because of the self-describing nature of the coded data format.

2. In untagged representation the message data only contains program
objects. No information is included in the message data to specify the type of
each program object. In this method, the receiving process must have a prior
knowledge of how to decode the received data because the coded data
format is not self-describing.

PROCESS ADDRESSING
a message-passing system usually supports two types of process addressing:

1. Explicit addressing. The process with which communication is desired is

explicitly named as a parameter in the communication primitive used. Primitives (a)

and (b) of Figure 3.5 require explicit process addressing.

2. Implicit addressing. A process willing to communicate does not explicitly name

a process for communication. Primitives (c) and (d) of Figure 3.5 support implicit

process addressing.

FAilURE HANDLING
While a distributed system may offer potential for parallelism, it is also prone to partial

failures such as a node crash or a communication link failure. As shown in Figure 3.6,

1. Loss of request message. This may happen either due to the failure of

communication link between the sender and receiver or because the receiver's node is

down at the time the request message reaches there.

2. Loss of response message. This may happen either due to the failure of

communication link between the sender and receiver or because the sender's node is down

at the time the response message reaches there.

3. Unsuccessful execution of the request. This happens due to the receiver's node

crashing while the request is being processed.

(a) Request Message is lost (b) Response message is lost. (c) Receiver's computer crashed.

GROUP COMMUNICATION
three types of group communication are possible:

1. One to many (single sender and multiple receivers)

2. Many to one (multiple senders and single receiver)

3. Many to many (multiple senders and multiple receivers)

In this scheme, there are multiple receivers for a message sent by a single sender.
One-tomany scheme is also known as multicast communication. A special case of
multicast communication is broadcast communication, in which the message is sent
to all processors connected to a network.

Group Management

In case of one-to-many communication, receiver processes of a message form a
group. Such groups are of two types--closed and open.

A closed group is one in which only the members of the group can send a message to
the group. an open group is one in which any process in the system can send a
message to the group as a whole.

A simple mechanism for this is to use a centralized group server process. All requests
to create a group, to delete a group, to add a member to a group, or to remove a
member from a group are sent to this process. Therefore, it is easy for the group
server to maintain up-to-date information of all existing groups and their exact
membership.

Group Addressing

A two-level naming scheme is normally used for group addressing.

The high-level group : is an ASCII string that is independent of the location
information of the processes

The low-level group : name depends to a large extent on the underlying hardware.

Such a network address is called a multicast address. A packet sent to a multicast
address is automatically delivered to all machines listening to the address.

Networks with broadcasting facility declare a certain address, such as zero, as a
broadcast address.

Message Delivery to Receiver Processes

When the packet reaches a machine, the kernel of that machine extracts the list of

process identifiers from the packet and forwards the message in the packet to those

processes in the list that belong to its own machine.

Buffered and Unbuffered Multicast

Unbuffered multicast, the message is not buffered for the receiving process and is
lost if the receiving process is not in a state ready to receive it.

Buffered multicast, the message is buffered for the receiving processes, so each
process of the multicast group will eventually receive the message.

Many-to-One Communication

In this scheme, multiple senders send messages to a single receiver. The single
receiver may be selective or nonselective. A selective receiver specifies a unique
sender; a message exchange takes place only if that sender sends a message. On the
other hand, a nonselective receiver specifies a set of senders, and if anyone sender
in the set sends a message to this receiver, a message exchange takes place.

Thus we see that an important issue related to the many-to-one communication

scheme is non determinism. The receiver may want to wait for information from any
of a group of senders, rather than from one specific sender. As it is not known in
advance which member (or members) of the group will have its information
available first, such behavior is nondeterministic. In some cases it is useful to
dynamically control the group of senders from whom to accept message.

Many-to-Many Communication
In this scheme, multiple senders send messages to multiple receivers. The one-to-
many and many-to-one schemes are implicit in this scheme. an important issue
related to many-to-many communication scheme is that of ordered message
delivery. Ordered message delivery ensures that all messages are delivered to all
receivers in an order acceptable to the application. This property is needed by many
applications for their correct functioning.

The commonly used semantics for ordered delivery of multicast messages are :

absolute ordering

consistent ordering

causal ordering

Absolute ordering

This semantics ensures that all messages are delivered to all receiver processes in the
exact order in which they were sent

consistent ordering
This semantics ensures that all messages are delivered to all receiver processes in the
same order. However, this order may be different from the order in which messages
were sent (see Fig. 3.16).

One method to implement consistent-ordering semantics is to make the many-to-
many scheme appear as a combination of many-to-one and one-to-many schemes.
That is, the kernels of the sending machines send messages to a single receiver (known
as a sequencer) that assigns a sequence number to each message and then multicasts
it.

Causal Ordering
An example of causal ordering of messages is given in Figure 3.17. In this example,

sender SI sends message m1 to receivers R1, R2 , and R3 and sender S2 sends message m2

to receivers R2 , and R3 . On receiving nu , receiver R1 inspects it, creates a new message

ms, and sends m-; to R2 and R3 . Note that the event of sending m3 is causally related to

the event of sending m, because the contents of m-; might have been derived in part from

ml; hence the two messages must be delivered to both R2 and R3 in the proper
order, m, before m3' Also note that since m2 is not causally related to either m, or
m3' m2 can be delivered at any time to R2 and R3 irrespective of m, or m-, This is
exactly what the example of Figure 3.17 shows.

One method for implementing causal-ordering semantics is the CBCAST protocol of the
ISIS system.

A simple example to illustrate the algorithm is given in Figure 3.18. In this example, there' are
four processes A, B, C, and D. The status of their vectors at some instance of time is (3, 2, 5,
I), (3, 2, 5, 1), (2, 2, 5, 1), and (3, 2, 4, 1), respectively. This means that, until now, A has sent
three messages, B has sent two messages, C has sent five messages, and D has sent one
message to other processes. Now A sends a new message to other processes. Therefore, the
vector attached to the message will be (4, 2, 5, 1). The message can be delivered to B
because it passes both tests. However, the message has to be delayed by the runtime
systems of sites of processes C and D because the first test fails at t he site of process C and
the second test fails at the site of process D.
A good message-passing system should support at least consistent- and causal ordering
semantics and should provide the flexibility to the users to choose one of these in their
applications.

Distributed Shared Memory
Two basic paradigms
Shared-memory paradigm :

Send (recipient, data)
Receive (data)

Message-passing paradigm : data = Read (address)
Write (address, data)

DESIGN AND IMPlEMENTAION ISSUES OF DSM

1.Granularity.

2. Structure of shared-memory space.

3. Memory coherence and access synchronization.

4. Data location and access

5. Replacemet strategy

6. Thrashing

7. Heterogeneity

Granularity :

Factors Influencing Block Size Selection

1. Pageing overhead

2. Directory Size

3. Thrashing

4. False Sharing

Structure of Shared-memory space :

1. No Structuring

2. Structuring by data type

3. Structuring as a database

A consistency model basically refers to the degree of consistency that has to be

maintained for the shared-memory data for the memory to work correctly for a
certain set of applications. It is defined as a set of rules that applications must obey if
they want the DSM system to.provide the degree of consistency guaranteed by the
consistency model.

• Strict Consistency Model

• Sequential Consistency Model

• Causal Consistency Model

• Pipelined Random – Access Memory Consistency Model

• Processor Consistency Model

• Weak Consistency Model

• Release Consistency Model

• Discussion of Consistency Models

Implementing Sequential Consistency Model
We saw above that the most commonly used consistency model in DSM systems is the
sequential consistency model. Hence, a description of the commonly used protocols
for implementing sequentially consistent D5M systems is presented below. A protocol
for implementing a release-consistent DSM system will be presented in the next
section. Protocols for implementing the sequential consistency model in a DSM system
depend to a great extent on whether the DSM system allows replication and/or
migration of shared-memory data blocks.

1. Nonreplicated, nonmigrating blocks (NRNMBs)

2. Nonreplicated, migrating blocks (NRMBs)

3. Replicated, migrating blocks (RMBs)

4. Replicated, nonmigrating blocks (RNMBs)

Nonreplicated, Nonmigrating Blocks

This is the simplest strategy for implementing a sequentially consistent DSM system.
In this strategy, each block of the shared memory has a single copy whose location is
always fixed. All access requests to a block from any node are sent to the owner node
of the block, which has the only copy of the block. On receiving a request from a client
node, the memory management unit (MMU) and operating system software of the
owner node perform the access request on the block and return a response to the client
(Fig. 5.3).

Although the method is simple and easy to implement, it suffers from the
following drawbacks:
• Serializing data access creates a bottleneck.
• Parallelism, which is a major advantage of DSM, is not possible with this
method.

Nonreplicated, Migrating Blocks
In this strategy each block of the shared memory has a single copy in the entire system. However,
each access to a block causes the block to migrate from its current node to the node from where it is
accessed. Therefore, unlike the previous strategy in which the owner node of a block always remains
fixed, in this strategy the owner node of a block changes as soon as the block is migrated to a new
node (Fig. 5.4).

The method has the following advantages :

1. No communication costs are incurred when a process accesses data currently held
locally.
2. It allows the applications to take advantage of data access locality. If an
application exhibits high locality of reference, the cost of data migration is
amortized over multiple accesses.

However, the method suffers from the following drawbacks:
1. It is prone to thrashing problem. That is, a block may keep migrating frequently
from one node to another, resulting in few memory accesses between migrations
and thereby poor performance.
2. The advantage of parallelism cannot be availed in this method also.

REPLACEMENT STRATEGY
following issues must be addressed when the available space for caching shared data fills up at a
node:
1. Which block should be replaced to make space for a newly required block?
2. Where should the replaced block be placed?
Which Block to Replace
usual classification of replacement algorithms group them into the following categories

1. Usage based versus non-usage based (2algorithms : Least recently used (LRU) / (FIFO))
2. Fixed space versus variable space (5 types)

* unused - A free memory block that is not currently being used.

* nil - A block that has been invalidated.
* Read – only : A block for which the node has only read access right.
* Read – owned : A block for which the node has only read access right but is also the owner of the block.

* Writable - A block for which the node has write access permission.

Where to Place a Replaced Block
two commonly used approaches :

I. Using secondary store. In this method, the block is simply transferred on to a local
disk.
2. Using the memory space of other nodes. Sometimes it may be faster to transfer a
block over the network than to transfer it to a local disk. Therefore, another method for
storing a useful block is to keep track of free memory space at all nodes in the system and
to simply transfer the replaced block to the memory of a node with available space.

Thrashing is said to occur when the system spends a large amount of time
transferring shared data blocks from one node to another, compared to the time
spent doing the useful work of executing application processes.

Thrashing may occur in the following situations:

1. When interleaved data accesses made by processes on two or more nodes
causes a data block to move back and forth from one node to another in quick
succession (a ping-pong effect)

2. When blocks with read-only permissions are repeatedly invalidated soon after
they are replicated
Such situations indicate poor (node) locality in references. If not properly handled,

thrashing degrades system performance considerably. Therefore, steps must be taken to

solve this problem. The following methods may be used to solve the thrashing problem in

DSM systems:

I. Providing application-controlled locks. Locking data to prevent other nodes from

accessing that data for a short period of time can reduce thrashing. An applicationcontrolled

lock can be associated with each data block to implement this method.

2. Nailing a block to a node for a minimum amount of time. Another method to

reduce thrashing is to disallow a block to be taken away from a node until a minimum

amount of time t elapses after its allocation to that node. The time t can either be fixed

statically or be tuned dynamically on the basis of access patterns

3. Tailoring the coherence algorithm to the shared-data usage patterns. Thrashing

can also be minimized by using different coherence protocols for shared data having

different characteristics.

ADVANTAGES OF DSM

Simpler Abstraction it provides to the application programmers of loosely coupled distributed-
memory machines.

Better Portability of Distributed Application Programs This allows for a more natural
transition from sequential to distributed applications. In principle, distributed application programs
written for a shared-memory multiprocessor system can be executed on a distributed shared-memory
system without change.

Better Performances of Some Applications
3 reasons
- locality of Data
- On-demand data movement
- Larger memory space

Flexible Communication Environment in which the sender process need not specify the identity of
the receiver processes of the data. It simply places the data in the shared memory and the receivers access it
directly from the shared memory. Therefore, the coexistence of the sender and receiver processes is also not
necessary in the shared-memory paradigm.

Ease of Process Migration process control block (PCB) of the migrant

process from the processor of the old node and attaching it to the ready queue of the new
node's processor. A PCB is a data block or a record associated with each process that
contains useful information such as process state, CPU registers, scheduling information,
memory management information, I/O status information, and so on.

Synchronization
In systems with multiple concurrent processes , it is economical to share the system
resources (hardware or software) among the concurrently executing processes. In
such a situation, sharing may be cooperative or competitive.

Both cooperative and competitive sharing require adherence to certain rules of
behavior that guarantee that correct interaction occurs . The rules for enforcing
correct interaction are implemented in the form of synchronization mechanisms .

synchronization mechanisms that are suitable for distributed systems. In particular,
the following synchronization-related issues are described:

• Clock synchronization

• Event ordering

• Mutual exclusion

• Deadlock

• Election algorithms

Clock SYNCHRONIZATION
Every computer needs a timer mechanism (called a computer clock) to keep track of current time and
also for various accounting purposes such as calculating the time spent by a process in CPU
utilization, disk I/O, and so on, so that the corresponding user can be charged properly. In a
distributed system, an application may have processes that concurrently run on multiple nodes of the
system. For correct results, several such distributed applications require that the clocks of the nodes
are synchronized with each other.

distributed operating system designer to devise and use suitable algorithms for properly
synchronizing the clocks of a distributed system.

How Computer Clocks Are Implemented : A computer clock usually consists of three components-a
quartz crystal that oscillates at a well-defined frequency, a counter register, and a constant register.

Drifting or Clocks : A clock always runs at a constant rate because its quartz crystal oscillates at a
well-defined frequency. However, due to differences in the crystals, the rates at which two clocks run

are normally different from each other.

Types of clock synchronization:
1. Synchronization of the computer clocks with real-time (or external) clocks.
2. Mutual (or internal) synchronization of the clocks of different nodes of the

system.

Clock Synchronization Algorithms
Clock synchronization algorithms

1. centralized Algorithms , one node has a real-time receiver. This node is usually

called the time server node, and the clock time of this node is regarded as correct and used as the
reference time. The goal of the algorithm is to keep the clocks of all other nodes synchronized with the
clock time of the time server node.

 Passive Time Server Centralized Algorithm

 Active Time Server Centralized Algorithm

2. Distributed Algorithms , a simple method for clock synchronization may be

to equip each node of the system with a real-time receiver so that each node's clock can be
independently synchronized with real time.

 Global Averaging Distributed Algorithms

 Localized Averaging Distributed Algorithms

EVENT ORDERING
Keeping the clocks in a distributed system synchronized to within 5 or 10msec is an
expensive and nontrivial task.

a new relation called happened before and introduced the concept of logical clocks for
ordering of events based on the happened-before relation.

two events are concurrent if neither can causally affect the other. Due to this reason, the

happened-before relation is sometimes also known as the relation of causal ordering.

Some of the events are below :

1. Logical Clocks
2. Physical Clocks

Total Ordering of Events

MUTUAL EXCLUSION
exclusiveness of access is called mutual exclusion between processes, means are
introduced to prevent processes from executing concurrently within their associated
critical sections.

An algorithm for implementing mutual exclusion must satisfy the following requirements:

1. Mutual exclusion.

2. No starvation.

Three basic approaches used by different algorithms for implementing mutual exclusion
in distributed systems are described below.

Centralized Approach

Distributed Approach

Token Passing Approach

A token is a special type of message

that entitles its holder to enter

a critical section.

DEADLOCK
Since a system consists of a finite number of units of each resource type (for example, three
printers, six tape drives, four disk drives, two CPUs, etc.), multiple concurrent processes
normally have to compete to use a resource.

deadlock, that is, a situation in which competing processes prevent their mutual

progress even though no single one requests more resources than are available. It may

happen that some of the processes that entered the waiting state (because the requested
resources were not available at the time of request) will never again change state, because
the resources they have requested are held by other waiting processes. This situation is
called deadlock, and the processes involved are said to be deadlocked.

Necessary Conditions for Deadlock

Deadlock Modeling

Necessary and Sufficient Conditions for Deadlock

Handling Deadlocks In Distributed Systems

Deadlock Avoidance

Deadlock Prevention

Deadlock Detection

Unit – IV Distributed File Systems
A file system is a subsystem of an operating system that performs file management

activities such as organization, storing, retrieval, naming, sharing, and protection of files.

A distributed file system provides similar abstraction to the users of a distributed

system and makes it convenient for them to use files in a distributed environment.

It’s support the following :

1. Remote information sharing

2. User mobility

3. Availability

4. Diskless workstations

DFS following 3 types of Services

1. Storage Service

2. True File Service

3. Name Service

Desirable FEATURES OF A GOOD DISTRIBUTED FILE SYSTEM

1. Transparency – 4 types :Structure | Access Transparency | Naming | Replication

2. User Mobility - the flexibility to work on different nodes at different times, to automatically
bring a user's environment at the time of login to the node where the user logs in.

3. Performance - is measured as the average amount of time needed to satisfy client requests.

4. Simplicity and ease of use - semantics of the distributed file system understand.

5. Scalability – a scalable design should withstand high service load, accommodate growth of
the user community, and enable simple integration of added resources.

6. High Availabilty - continue to function even when partial failures occur due to the failure of
one or more components, such as a communication link failure, a machine failure, or a storage
device crash.

7. High reliability - to make backup copies of their files of the unreliability of the system.

8. Data Integrity - A file is often shared by multiple users.

9. Security - Necessary security mechanisms must be implemented to protect information
stored in a file system against unauthorized access.

10. Heterogeneity - As a consequence of large scale, heterogeneity becomes

inevitable in distributed systems. Heterogeneous distributed systems provide the

flexibility to their users to use different computer platforms for different applications.

File-ACCESSING MODELS
The file-accessing model of a distributed file system mainly depends on two factors-the method used for
accessing remote files and the unit of data access.

Accessing Remote Files :
1.Remote Service Model - That is, the client's request for file access is delivered
to the server, the server machine performs the access request, and finally the result is
forwarded back to the client. The access requests from the client and the server replies for
the client are transferred across the network as messages.
2. Data – caching model - The client's request is processed on the client's node itself by using
the cached data. A replacement policy, such as the least recently used (LRU), is used to keep
the cache size bounded.

Unit of Data Transfer : The four commonly used data transfer models based on this factor are as follows:

1. File-level transfer model. In this model, when an operation requires file data to be
transferred across the network in either direction between a client and a server, the whole
file is moved.
2. Block-level transfer model. In this model, file data transfers across the network
between a client and a server take place in units of file blocks.
3. Byte-level transfer model. In this model, file data transfers across the network
between a client and a server take place in units of bytes.
4. Record-level transfer model. The three file data transfer models described above
are commonly used with unstructured file models. The record-level transfer model is
suitable for use with those file models in which file contents are structured in the form of
records.

FILE-SHARING SEMANTICS
A shared file may be simultaneously accessed by multiple users. when modifications of file data
made by a user are observable by other users. This is defined by the type of file sharing
semantics adopted by a file system, defined the following types of file-sharing semantics:

1. UNIX semantics : This semantics enforces an absolute time ordering on all

operations and ensures that every read operation on a file sees the effects of all previous

write operations performed on that file [Fig. 9.1(a)].

2. Session semantics.

3. Immutable shared-files semantics.

4. Transaction-like semantics.

FILE-CACHING SCHEMES
The idea in file caching in these systems is to retain recently accessed file data in main memory, so that repeated
accesses to the same information can be handled without additional disk transfers . In implementing a file-
caching scheme for a centralized file system, one has to make several key decisions, such as the granularity of
cached data (large versus small), cache size (large versus small, fixed versus dynamically changing), and the
replacement policy.
a file-caching scheme for a distributed file system should also address the following key decisions:

1. Cache location : Cache location refers to the place where the cached data is stored. Assuming
that the original location of a file is on its server's disk, there are three possible cache locations
in a distributed file system (Fig. 9.2).

2. Modification propagation : a file's data may simultaneously be cached on multiple nodes. In such a
situation, when the caches of all these nodes contain exactly the same copies of the file data, we say that the
caches are consistent. Write-through Scheme | Delayed – write Scheme : 1. Write on ejection from cache, 2.
Periodic write, 3. Write on close.

3. Cache validation : A file data may simultaneously reside in the cache of multiple nodes. The
modification propagation policy only specifies when the master copy of a file at the server node is
updated upon modification of a cache entry. Therefore, it becomes necessary to verify if the data
cached at a client node is consistent with the master copy. There are basically two approaches to verify the
validity of cached data-the client initiated approach and the server-initiated approach

FILE REPLICATION
A replicated file is a file that has multiple copies, with each copy located on a separate file
server. Each copy of the set of copies that comprises a replicated file is referred to as a
replica of the replicated file.

Difference between Replication and Caching
two concepts have the following basic differences:
1. A replica is associated with a server, whereas a cached copy is normally

associated with a client.

2. The existence of a cached copy is primarily dependent on the locality in file

access patterns, whereas the existence of a replica normally depends on

availability and performance requirements.

3. As compared to a cached copy, a replica is more persistent, widely known, secure,

available, complete, and accurate.

4. A cached copy is contingent upon a replica. Only by periodic revalidation with

respect to a replica can a cached copy be useful.

a replicated copy from a cached copy by calling them first-class replicas and second-class replicas,
respectively.

Advantages of Replication

1. I creased availability 5. Improved system throughput.

2. Increased reliability. 6. Better scalability.

3 Improved response time. 7. Autonomous operation.

4. Reduced network traffic.

Raplicatlon Transparency :- Naming of Replicas , Replication Control [Explicit replication, Implicit replica]

• Multicopy Update Problem :- In fact, maintaining consistency among copies when a replicated file is updated is
the major design issue of a file system that supports replication of files. Read-Only Replication , Read-Any-
Write-All Protocol , Available-Copies Protocol , Primary-Copy Protocol ,Quorum-Based Protocols(
fig. 9.4)

Fault Tolerance
Fault tolerance is an important issue in the design of a distributed file system. Various types of
faults could harm the integrity of the data stored by such a system. For instance, a processor
loses the contents of its main memory in the event of a crash.

Distributed file system to tolerate faults are as follows :

1. Availability.

2. Robustness :- Robustness of a file refers to its power to survive crashes of the storage device and
decays of the storage medium on which it is stored.

3. Recoverability :-Recoverability of a file refers to its ability to be rolled back to an

earlier, consistent state when an operation on the file fails or is aborted by the client.

stable-storage technique and the effect of a service paradigm on the fault tolerance of

distributed file systems are : I. Volatile storage, 2. Nonvolatile storage, 3. Stable storage .

Effect of Service Paradigm on Fault Tolerance : 1.Stateful , 2. Stateless

5 operations : Opern, Read, Write, Seek , Close. 2 operations : Read , Write .

An Atomic transaction (or just transaction for short) is a computation

consisting of a collection of operations that take place indivisibly in the presence of
failures and concurrent computations

Transactions have the following essential properties:

1. Atomicity. This property ensures that to the outside world all the
operations of a transaction appear to have been performed indivisibly.

2. Serializability. This property (also known as isolation property) ensures
that concurrently executing transactions do not interfere with each other.

3. Permanence. This property (also known as durability property) ensures that
once a transaction completes successfully, which it is running crashes.

The three essential operations for transaction service are as follows:

1.Begin_transaction : Begins a new transaction and returns a unique
transaction identifier (TID). This identifier is used in other operations of this
transaction.

2. End_transaction : This operation indicates that, from the

viewpoint of the client, the transaction completed successfully.

3. Abort_transaction : Aborts the transaction, restores any changes made so
far within the transaction to the original values, and changes its status to
inactive. A transaction is normally aborted in the event of some system
failure.

DESIGN PRINCIPLES
The following general principles for designing distributed file systems:

1.Clients have cycles to burn This principle aims at enhancing the scalability of the design, since it
lessens the need to increase centralized (commonly used) resources and allows graceful degradation
of system performance as the system grows in size.

2. Cache whenever possible Better performance, scalability, user mobility, and site autonomy
motivate this principle. Caching of data at clients' sites frequently improves overall system
performance because it makes data available wherever it is being currently used, thus saving a large
amount of computing time and network bandwidth.

3. Exploit usage properties files should be grouped into a small number of easily

identifiable classes, and then class-specific properties should be exploited for
independent optimization for improved performance.

4. Minimize system wide knowledge and change. This principle is aimed at enhancing the
scalability of design. The larger is a distributed system, t.he more difficult it is to be aware
at all times of the entire state of the system and to update distributed or replicated data
structures in a consistent manner.

5. Trust the fewest possible entities. This principle is aimed at enhancing the security of
the system. For example, it is much simpler to ensure security based on theintegrity of
the much smaller number of servers rather than trusting thousands of clients.

6. Batch if possible. Batching often helps in improving performance greatly. For example,
grouping operations together can improve throughput, although it is often at the cost of
latency. Similarly, transfer of data across the network in large chunks rather than as
individual pages is much more efficient.

Unit –V Security
The security goals of a computer system are decided by its security policies, and the methods used
to achieve these goals are called security mechanisms.
common goals of computer security are as follows :
1. Secrecy. Information within the system must be accessible only to authorized
users.
2. Privacy. Misuse of information must be prevented. That is, a piece of information
given to a user should be used only for the purpose for which it was given.
3. Authenticity. When a user receives some data, the user must be able to verify its
authenticity. That is, the data arrived indeed from its expected sender and not from
any other source.
4. Integrity. Information within the system must be protected against accidental
destruction or intentional corruption by an unauthorized user.

A total approach to computer security involves both external and internal security.
External security deals with securing the computer system against external
factors such as fires, floods, earthquakes, stolen disks/tapes, leaking out of stored
information by a person who has access to the information, and so on.
Internal security, on the other hand, mainly deals with the following two aspects:
1. User authentication. Once a user is allowed physical access to the computer
facility, the user's identification must be checked by the system before the user can
actually use the facility.
2. Access control. A computer system contains many resources and several types of
information.
3. Communication security. In a distributed system, the communication channels that are used to connect the
computers are normally exposed to attackers who may try to breach the security of the system by observing,
modifying, or disrupting the communications.

POTENTIAL ATTACKS TO COMPUTER SYSTEMS
computer security is to identify the potential threats/attacks to computer systems. The term intruder or
attacker is commonly used to refer to a person or program trying to obtain unauthorized access to data
or a resource of a computer system. An intruder may be a threat to computer security in many ways that
are broadly classified into two categories-passive attacks and active attacks.

Some commonly used methods of passive attack are described below:

1. Browsing. In this method, intruders attempt to read stored files, message packets

passing by on the network, other processes' memory, and so on, without modifying any

data.

2. Leaking. Prevention of leaking is a difficult problem to solve and requires preventing all types of

communication between the accomplice and the intruder. The problem of ensuring that it

is impossible for a potential accomplice to leak any information to the outside world is

called the confinement problem

3. Inferencing, In this method, an intruder tries to draw some inference by closely

observing and analyzing the system's data or the activities carried out by the system.

4. Masquerading. In this method, an intruder masquerades as an authorized user

or program in order to gain access to unauthorized data or resources. These programs can improperly
use the access rights of an executing user and leak information. This editor program is then compiled and
read into the bin directory of a user, whose files the intruder is interested in. Penetrating computer
security in this manner is known as the Trojan horse attack.

An intruder can also masquerade as a trusted server to a client requesting a service

from the system. This action is known as spoofing.

Active Attacks
Active intruders are more malicious than passive intruders. active attacks cause are
corrupting files, destroying data, imitating hardware errors, slowing down the system,
filling up memory or disk space with garbage, causing the system to crash, confounding a
receiver into accepting fabricated messages, and denial/delay of message delivery.

Some commonly used forms of active attacks are described below.

Viruses : A computer virus is a piece of code attached to a legitimate program that, when
executed, infects other programs in the system by replicating and attaching itself to them.
In addition to this replicating effect, a virus normally does some other damage to the
system, such as corrupting/erasing files.

Worms : Worms are programs that spread from one computer to another in a network of
computers. They spread by taking advantage of the way in which resources are shared on
a computer network and, in some cases, by exploiting flaws in the standard software
installed on network systems. A worm program may perform destructive activities after
arrival at a network node.

Logic Bombs : A logic bomb is a program that lies dormant until some trigger condition
causes it to explode. On explosion, it destroys data and spoils system software of the host
computer. A trigger condition may be an event such as accessing a particular data file, a
program being run a certain number of times, the passage of a given amount of time, or
the system clock reaching some specific date.

CRYPTOGRAPHY
Cryptography is a means of protecting private information against unauthorized access in
those situations where it is difficult to provide physical security.
Basic Concepts and Terminologies :
Two primitive operations employed by cryptography are encryption and decryption.
Encryption (also called enciphering) is the process of transforming an intelligible information (called
plaintext or clear text) into an unintelligible form (called cipher text).
Decryption (also called deciphering) is the process of transforming the information back
from cipher text to plaintext.

Encryption is basically a mathematical function (encryption algorithm) having the
following form: C = E (P, Ke)
where P is the plaintext to be encrypted, K, is an encryption key, and C is the resulting
Cipher text.
Decryption of C is performed by a matching function (decryption algorithm)
that has the following form: P = D (C, Kd)
where Kd is the decryption key. Note that the decryption function D is the inverse of the
encryption function E.

AUTHENTICATION
Authentication deals with the problem of verifying the identity of a user before permitting
access to the requested resource. Authentication basically involves identification and
verification. Identification is the process of claiming a certain identity by a user, while
verification is the process of verifying the user's claimed identity.

The main types of authentication in a distributed system are as follows:

1. User logins authentication. It verifying the identity of a user by the system at the time of login.

2. One-way authentication of communicating entities. It deals with verifying the identity of one of the
two communicating entities by the other entity.

3. Two-way authentication of communicating entities. It deals with mutual authentication, whereby both
communicating entities verify each other's identity.

Approaches to Authentication :

1. Proof by knowledge. In this approach, authentication involves verifying something that can only be
known by an authorized principal.

2. Proof by possession. In this approach, a user proves his or her identity by producing some item that
can only be possessed by an authorized principal. The system is designed to verify the produced item to
confirm the claimed identity.

3. Proof by property. In this approach, the system is designed to verify the identity

of a user by measuring Some physical characteristics of the user that are hard to forge. The

measured property must be distinguishing, that is, unique among all possible users.

Types of Authentication
User Login Authentication : based on passwords, the system maintains a table of authorized users'
login names and their corresponding passwords. a password-based authentication system must have
mechanisms for the following:

1. Keeping passwords secret

2. Making passwords difficult to guess

3. Limiting damages done by a compromised password

4. Identifying and discouraging unauthorized user logins

5. Single sign-on for using all resources in the system

One – Way Authentication of Communicating Entities : protocols can be broadly classified into two
categories-those based on symmetric cryptosystems and those based on asymmetric cryptosystems.

Protocols Based on Symmetric Cryptosystems

Protocols Based on Asymmetric Cryptosystems

Two-Way Authentication of Communicating Entities
Two-way authentication protocols allow both communicating entities to verify each
other's identity before establishing a secure logical communication channel between
them.

DIGITAL SIGNATURES
A digital signature is basically a code, or a large number, that is unique for each message
and to each message originator. It is obtained by first processing the message with a hash
function (called a digest function) to obtain a small digest dependent on each bit of
information in the message and then encrypting the digest by using the originator's
secret key.
A protocol based on a digital signature for ensuring message integrity works as follows:

1. A sender (A) computes the digest (D) of a message (M). It then encrypts the digest D by using its secret key (Sa)
to obtain a ciphertext Cl = E(D, Sa). A signed message is then created that consists of the sender's identifier, the
message M in its plaintext form, and the ciphertext C,. The signed message, which has the form (IDa' CJ , M), is then
sent to a receiver.

2. On receiving the signed message, the receiver decrypts Cl by using the public key of the sender to recover the
digest D. It then calculates a digest for M (by using the same digest function) and compares the calculated digest·
with the digest recovered by decrypting Cl' If the two are equal, message M is considered to be correct; otherwise
it is considered incorrect

Privacy Enhanced Mail (PEM) scheme, designed for adding privacy to Internet mail applications, is a
good example of use of cryptography and digital signature techniques. PEM offers confidentiality,
authentication, and message integrity.

The PEM program maintains a database of the secret keys of its local users and the public keys of
remote users. Currently, the Rivest-Shamir-Adleman (RSA) algorithm is used to generate the

public/secret key pairs for users. PEM provides the following types of facilities:

1. Confidentiality. Sending a message in encrypted form so that sensitive

information within it cannot be read by an int.ruder.

2. Message integrity. Sending a signed message so that the receiver can be ensured

that the contents of the message were not changed.

DESIGN PRINCIPlES
1.Least privilege. The principle of least privilege (also known as the need-to-know principle)
states that any process should be given only those access rights that enable it to access, at
any time, what it needs to accomplish its function and nothing more and nothing less.

2. Fail-safe defaults. Access rights should be acquired by explicit permission only and the
default should be no access. This principle requires that access control decisions should be
based on why an object should be accessible to a process rather than on why it should not be
accessible.

3. Open design. This principle requires that the design of the security mechanisms should not
be secret but should be public. It is a mistake on the part of a designer to assume that the
intruders will not know how the security mechanism of the system works.

4. Built in to the system. This principle requires that security be designed into the systems at
their inception and be built in to the lowest layers of the systems. That is, security should not
be treated as an add-on feature because security problems cannot be resolved very
effectively by patching the penetration holes detected in an existing system.

5. Check for current authority. This principle requires that every access to every object must
be checked using an access control database for authority. This is necessary to have
immediate effect of revocation of previously given access rights.

6. Easy granting and revocation of access rights. For greater flexibility, a security system must
allow access rights for an object to be granted or revoked dynamically. It should be possible to
restrict some of the rights and to grant to a user only those rights that are sufficient to
accomplish its functions.

7. Never trust other parties. For producing a secure distributed system, the system

components must be designed with the assumption that other parties (people or programs)

are not trustworthy until they are demonstrated to be trustworthy. For example, clients and

servers must always be designed to view each other with mutual suspicion.

8. Always ensure freshness of messages. To avoid security violations through the

replay of messages, the security of a distributed system must be designed to always ensure

freshness of messages exchanged between two communicating entities.

9. Build firewalls. To limit the damage in case a system's security is compromised,

the system must have firewalls built into it. One way to meet this requirement is to allow

only short-lived passwords and keys in the system10. Efficient, The security mechanisms used
must execute efficiently and be simple

to implement.

11. Convenient to use. To be psychologically acceptable, the security mechanisms

must be convenient to use. Otherwise, they are likely to be bypassed or incorrectly used

by the users.

12. Cost effective. It is often the case that security needs to be traded off with other

goals of the system, such as performance or ease of use. Therefore, in designing the

security of a system, it is important to come up with the right set of trade-offs that take

into account the likelihood that the system will be compromised with the cost of providing

the security, both in terms of money and personnel experience.

	DOS_unit 1.pdf
	Unit 2 Part 1.pdf
	Unit 2 Part 2.pdf
	DOS_Unit 3 .pdf
	DOS_Unit 4.pdf
	DOS_Unit 5.pdf

