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1

Basic Concepts

The term data structure is used to describe the way data is stored, and the term
algorithm is used to describe the way data is processed. Data structures and
algorithms are interrelated. Choosing a data structure affects the kind of algorithm
you might use, and choosing an algorithm affects the data structures we use.

An Algorithm is a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time. No
matter what the input values may be, an algorithm terminates after executing a finite
number of instructions.

 Introduction to Data Structures:

Data structure is a representation of logical relationship existing between individual elements of

data. In other words, a data structure defines a way of organizing all data items that considers

not only the elements stored but also their relationship to each other. The term data structure

is used to describe the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that

algorithm. Therefore, data structure is represented as:

Algorithm + Data structure = Program

A data structure is said to be linear if its elements form a sequence or a linear list. The linear

data structures like an array, stacks, queues and linked lists organize data in linear order. A

data structure is said to be non linear if its elements form a hierarchical classification where,

data items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures

represents hierarchial relationship between individual data elements. Graphs are nothing but

trees with certain restrictions removed.

Data structures are divided into two types:

•

•

Primitive data structures.

Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the

machine instructions. They have different representations on different computers. Integers,

floating point numbers, character constants, string constants and pointers come under this

category.

Non-primitive data structures are more complicated data structures and are derived from
primitive data structures. They emphasize on grouping same or different data items with
relationship between each data item. Arrays, lists and files come under this category. Figure
1.1 shows the classification of data structures.
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1.2. Data structures: Organization of data

The collection of data you work with in a program have some kind of structure or organization.

No matte how complex your data structures are they can be broken down into two fundamental

types:

•

•

Contiguous

Non-Contiguous.

In contiguous structures, terms of data are kept together in memory (either RAM or in a file).

An array is an example of a contiguous structure. Since each element in the array is located

next to one or two other elements. In contrast, items in a non-contiguous structure and

scattered in memory, but we linked to each other in some way. A linked list is an example of a

non-contiguous data structure. Here, the nodes of the list are linked together using pointers

stored in each node. Figure 1.2 below illustrates the difference between contiguous and non-

contiguous structures.

1 2 3 1 2 3

(a) Contiguous (b) non-contiguous

Figure 1.2 Contiguous and Non-contiguous structures compared

Contiguous structures:

Contiguous structures can be broken drawn further into two kinds: those that contain data

items of all the same size, and those where the size may differ. Figure 1.2 shows example of

each kind. The first kind is called the array. Figure 1.3(a) shows an example of an array of

numbers. In an array, each element is of the same type, and thus has the same size.

The second kind of contiguous structure is called structure, figure 1.3(b) shows a simple
structure consisting of a person‘s name and age. In a struct, elements may be of different data
types and thus may have different sizes.



For example, a person‘s age can be represented with a simple integer that occupies two bytes
of memory. But his or her name, represented as a string of characters, may require many bytes
and may even be of varying length.

Couples with the atomic types (that is, the single data-item built-in types such as integer, float

and pointers), arrays and structs provide all the ―mortar‖ you need to built more exotic form of

data structure, including the non-contiguous forms.

int arr[3] = {1, 2, 3};

1 2 3

struct cust_data
{

int age;

char name[20];
};

cust_data bill= {21, ―bill the student‖};
(a) Array

21
(b) struct

―bill the student‖

Figure 1.3 Examples of contiguous structures.

Non-contiguous structures:

Non-contiguous structures are implemented as a collection of data-items, called nodes, where

each node can point to one or more other nodes in the collection. The simplest kind of non-

contiguous structure is linked list.

A linked list represents a linear, one-dimension type of non-contiguous structure, where there is

only the notation of backwards and forwards. A tree such as shown in figure 1.4(b) is an

example of a two-dimensional non-contiguous structure. Here, there is the notion of up and

down and left and right.

In a tree each node has only one link that leads into the node and links can only go down the
tree. The most general type of non-contiguous structure, called a graph has no such
restrictions. Figure 1.4(c) is an example of a graph.
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(a) Linked List
B C

A
D
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(b) Tree F (c) graph

D E F G

Figure 1.4. Examples of non-contiguous structures
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2
Searching and  
Sorting

There are basically two aspects of computer programming. One is data
organization also commonly called as data structures. Till now we have seen
about data structures and the techniques and algorithms used to access
them. The other part of computer programming involves choosing the
appropriate algorithm to solve the problem. Data structures and algorithms
are linked each other. After developing programming techniques to represent
information, it is logical to proceed to manipulate it. This chapter introduces

this important aspect of problem solving.

Searching is used to find the location where an element is available. There are two  
types of search techniques. They are:

 Linear or sequential search

 Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is

a way in which the elements are organized systematically for some purpose. For

example, a dictionary in which words is arranged in alphabetical order and telephone

director in which the subscriber names are listed in alphabetical order. There are many

sorting techniques out of which we study the following.

• Bubble sort

• Quick sort

• Selection sort and

• Heap sort

There are two types of sorting techniques:

3. Internal sorting

4. External sorting

If all the elements to be sorted are present in the main memory then such sorting is

called internal sorting on the other hand, if some of the elements to be sorted are

kept on the secondary storage, it is called external sorting. Here we study only

internal sorting techniques.

• Linear Search:

This is the simplest of all searching techniques. In this technique, an ordered or

unordered list will be searched one by one from the beginning until the desired element

is found. If the desired element is found in the list then the search is successful

otherwise unsuccessful.

Suppose there are ‗n’ elements organized sequentially on a List. The number of



comparisons required to retrieve an element from the list, purely depends on where the

element is stored in the list. If it is the first element, one comparison will do; if it is

second element two comparisons are necessary and so on. On an average you need

[(n+1)/2] comparison‘s to search an element. If search is not successful, you would

need ‘n’ comparisons.

The time complexity of linear search is O(n).

Algorithm:

Let array a[n] stores n elements. Determine whether element ‗x‘ is present or not.

linsrch(a[n], x)
{

index = 0;
flag = 0;
while (index < n) do
{

if (x == a[index])
{

flag = 1;  
break;

}
index ++;

}
if(flag == 1)

printf(―Data found at %d position―, index);
else

printf(―data not found‖);

}

Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for: 45, we‘ll look at 1 element before success  

39, we‘ll look at 2 elements before success  

8, we‘ll look at 3 elements before success  

54, we‘ll look at 4 elements before success  

77, we‘ll look at 5 elements before success  

38 we‘ll look at 6 elements before success  

24, we‘ll look at 7 elements before success  

16, we‘ll look at 8 elements before success  

4, we‘ll look at 9 elements before success  

7, we‘ll look at 10 elements before success  

9, we‘ll look at 11 elements before success  

20, we‘ll look at 12 elements before success

For any element not in the list, we‘ll look at 12 elements before failure.



Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8

Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

3. Searching for x = 7 Search successful, data found at 3rd position.

4. Searching for x = 82 Search successful, data found at 7th position.

5. Searching for x = 42 Search un-successful, data not found.

1.4. A non-recursive program for Linear Search:

\{include <stdio.h>
\{include <conio.h>

main()
{

int number[25], n, data, i, flag = 0;  

clrscr();

printf("\n Enter the number of elements: ");  
scanf("%d", &n);
printf("\n Enter the elements:
"); for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be Searched: ");  

scanf("%d", &data);

for( i = 0; i < n; i++)
{

if(number[i] == data)
{

flag = 1;  
break;

}
}
if(flag == 1)

printf("\n Data found at location: %d", i+1);
else

printf("\n Data not found ");
}

1.5. A Recursive program for linear search:

6. include <stdio.h>
7. include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

if(position < n)



{
if(a[position] == data)

printf("\n Data Found at %d ", position);
else

linear_search(a, data, position + 1, n);
}
else

printf("\n Data not found");
}

void main()
{

int a[25], i, n, data;  
clrscr();
printf("\n Enter the number of elements: ");  

scanf("%d", &n);

printf("\n Enter the elements:
"); for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
printf("\n Enter the element to be seached: ");  

scanf("%d", &data);

linear_search(a, data, 0, n);  
getch();

}

1. BINARY SEARCH

If we have ‗n‘ records which have been ordered by keys so that x1 < x2 < … < xn . When we

are given a element ‗x‘, binary search is used to find the corresponding element from the

list. In case ‗x‘ is present, we have to determine a value ‗j‘ such that a[j] = x (successful

search). If ‗x‘is not in the list then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and

compare ‗x‘ with a[mid]. If x = a[mid] then the desired record has been found. If x <

a[mid] then ‗x‘ must be in that portion of the file that precedes a[mid]. Similarly, if

a[mid] > x, then further search is only necessary in that part of the file which follows

a[mid].

If we use recursive procedure of finding the middle key a[mid] of the un-searched

portion of a file, then every un-successful comparison of ‗x‘ with a[mid] will eliminate

roughly half the un-searched portion from consideration.

Since the array size is roughly halved after each comparison between ‗x‘ and a[mid],

and since an array of length ‗n‘ can be halved only about log2n times before reaching a

trivial length, the worst case complexity of Binary search is about log2n.

Algorithm:

Let array a[n] of elements in increasing order, n ≥ 0, determine whether ‗x‘ is present,

and if so, set j such that x = a[j] else return 0.



binsrch(a[], n, x)
{

low = 1; high = n;  

while (low < high) do

{
mid = (low + high)/2 if  

(x < a[mid])

high = mid – 1;  

else if (x > a[mid])

low = mid +  
1; else return mid;

}
return 0;

}

low and high are integer variables such that each time through the loop either ‗x‘ is

found or low is increased by at least one or high is decreased by at least one. Thus we

have two sequences of integers approaching each other and eventually low will become

greater than high causing termination in a finite number of steps if ‗x‘is not present.

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12

Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)  

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)  

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)  

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)  

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)  

low = 1, high = 12, mid = 13/2 = 6, check 20, found



If we are searching for x = 24: (This needs 3 comparisons)  

low = 1, high = 12, mid = 13/2 = 6, check 20

low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24, found

If we are searching for x = 38: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24
low = 8, high = 8, mid = 16/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, found

The number of comparisons necessary by search element:  

20 – requires 1 comparison;

8 and 39 – requires 2 comparisons;
4, 9, 24, 54 – requires 3 comparisons and
7, 16, 38, 45, 77 – requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding  

37/12 or approximately 3.08 comparisons per successful search on the average.

Example 2:

Let us illustrate binary search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8

Elements -15 -6 0 7 9 23 54 82 101

Solution:

The number of comparisons required for searching different elements is as follows:



1. If we are searching for x = 101: (Number of comparisons = 4)
low high mid
1 9 5

6 9 7

8 9 8

9 9 9

found

2. Searching for x = 82: (Number of comparisons = 3)
low high mid
1 9 5
6 9 7

8 9 8

found

3. Searching for x = 42: (Number of comparisons = 4)
low high mid
1 9 5

6 9 7

6 6 6

6 not found

4. Searching for x = -14: (Number of comparisons = 3)
low high mid
1 9 5

1 4 2

1 1 1

2 1 not found

Continuing in this manner the number of element comparisons needed to find each of  

nine elements is:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons

needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77

comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending

upon the value of x.

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7)
< x < a(8) the algorithm requires 3 element comparisons to determine that ‗x‘ is not  

present. For all of the remaining possibilities BINSRCH requires 4 element comparisons.

Thus the average number of element comparisons for an unsuccessful search is:  

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an  
unsuccessful search is O(log n).



2.2.1. A non-recursive program for binary search:

# include <stdio.h>  

# include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;  
clrscr();
printf("\n Enter the number of elements: ");  
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");  

for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be searched: ");  
scanf("%d", &data);
low = 0; high = n-1;  

while(low <= high)

{
mid = (low + high)/2;  

if(number[mid] == data)

{
flag = 1;  

break;

}
else
{

if(data < number[mid])
high = mid - 1;

else
low = mid + 1;

}
}
if(flag == 1)

printf("\n Data found at location: %d", mid + 1);
else

printf("\n Data Not Found ");
}

 A recursive program for binary search:

# include <stdio.h>  

# include <conio.h>

void bin_search(int a[], int data, int low, int high)
{

int mid ;
if( low <= high)
{

mid = (low + high)/2;  

if(a[mid] == data)

printf("\n Element found at location: %d ", mid + 1);
else
{

if(data < a[mid])
bin_search(a, data, low, mid-1);

else



X[0] X[1] X[2] X[3] X[4] X[5]

33 44 22 11 66 55

X[0] X[1] X[2] X[3] X[4] X[5] Remarks

33 44 22 11 66 55

22 44

11 44

44 66

55 66

33 22 11 44 55 66

bin_search(a, data, mid+1, high);

}
}
else

printf("\n Element not found");
}
void main()
{

int a[25], i, n, data;  

clrscr();

printf("\n Enter the number of elements: ");  
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");  

for(i = 0; i < n; i++)

scanf("%d", &a[i]);
printf("\n Enter the element to be searched: ");  

scanf("%d", &data);

bin_search(a, data, 0, n-1);  

getch();

}

Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to

pass through the file sequentially several times. In each pass, we compare each

element in the file with its successor i.e., X[i] with X[i+1] and interchange two element

when they are not in proper order. We will illustrate this sorting technique by taking a

specific example. Bubble sort is also called as exchange sort.

Example:

Consider the array x[n] which is stored in memory as shown below:

Suppose we want our array to be stored in ascending order. Then we pass through the  

array 5 times as described below:

Pass 1: (first element is compared with all other elements).

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1]  

if X[i] > X[i+1]. The process is shown below:

The biggest number 66 is moved to (bubbled up) the right most position in the array.



X[0] X[1] X[2] X[3] X[4] Remarks

33

22

22

22

33

11

11

11

33

33

33

44

44

44

44

55

55

55

X[0] X[1] X[2] X[3] Remarks

22 11 33 44

11 22

22 33

33 44

11 22 33 44

Pass 2: (second element is compared).

We repeat the same process, but this time we don‘t include X[5] into our comparisons.

i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if

X[i] > X[i+1]. The process is shown below:

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared).

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this,  

we move the third biggest number 44 to X[3].

Pass 4: (fourth element is compared).

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth  

biggest number 33 to X[2].

X[0] X[1] X[2] Remarks

11 22 33

11 22

22 33

Pass 5: (fifth element is compared).

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the

fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11 in

X[0]. Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.



Program for Bubble Sort:

#include <stdio.h>  

#include <conio.h>

void bubblesort(int x[], int n)
{

int i, j, temp;
for (i = 0; i < n; i++)
{

for (j = 0; j < n–i-1 ; j++)
{

if (x[j] > x[j+1])
{

temp = x[j];  

x[j] = x[j+1];  

x[j+1] = temp;

}
}

}
}

main()
{

int i, n, x[25];  

clrscr();

printf("\n Enter the number of elements: ");  
scanf("%d", &n);
printf("\n Enter Data:");  
for(i = 0; i < n ; i++)

scanf("%d", &x[i]);  

bubblesort(x, n);

printf ("\n Array Elements after sorting: ");  

for (i = 0; i < n; i++)

printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)

comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2

– 2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more  
elements to sorting.

Selection Sort:

Selection sort will not require no more than n-1 interchanges. Suppose x is an array of

size n stored in memory. The selection sort algorithm first selects the smallest element

in the array x and place it at array position 0; then it selects the next smallest element

in the array x and place it at array position 1. It simply continues this procedure until it

places the biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed in its

respective position in the array as detailed below:



Pass 1: Find the location j of the smallest element in the array x [0], x[1], . . . . x[n-1],

and then interchange x[j] with x[0]. Then x[0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest element in the

sub-array x[1], x[2], . . . . x[n-1], and then interchange x[1] with x[j]. Then

x[0], x[1] are sorted.

Pass 3: Leave the first two elements and find the location j of the smallest element in

the sub-array x[2], x[3], . . . . x[n-1], and then interchange x[2] with x[j].

Then x[0], x[1], x[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and

then interchange x[j] and x[n-2]. Then x[0], x[1], . . . . x[n-2] are sorted. Of

course, during this pass x[n-1] will be the biggest element and so the entire

array is sorted.

Time Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort

requires exclusive swapping. In spite of superiority of the selection sort over bubble

sort and the insertion sort (there is significant decrease in run time), its efficiency is

also O(n2) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort:

1 2 3 4 5 6 7 8 9 Remarks

65 70 75 80 50 60 55 85 45 find the first smallest element

i j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest element

i j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest element

i j swap a[i] and a[j]

45 50 55 80 70 60 75 85 65 Find the fourth smallest element

i j swap a[i] and a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest element

i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest element

i J swap a[i] and a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.



Non-recursive Program for selection sort:

# include<stdio.h>  

# include<conio.h>

void selectionSort( int low, int high );  

int a[25];

int main()
{

int num, i= 0;  

clrscr();

printf( "Enter the number of elements: " );  
scanf("%d", &num);
printf( "\nEnter the elements:\n" );  

for(i=0; i < num; i++)

scanf( "%d", &a[i] );  
selectionSort( 0, num - 1 );
printf( "\nThe elements after sorting are: " );  
for( i=0; i< num; i++ )

printf( "%d ", a[i] );  

return 0;

}

void selectionSort( int low, int high )
{

int i=0, j=0, temp=0, minindex;  

for( i=low; i <= high; i++ )

{
minindex = i;
for( j=i+1; j <= high; j++ )
{

if( a[j] < a[minindex] )

minindex = j;

}
temp = a[i];
a[i] = a[minindex];  

a[minindex] = temp;

}
}

Recursive Program for selection sort:

#include <stdio.h>  

#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};
selectionSort(int);

main()
{

int i, n = 0;  

clrscr();

printf (" Array Elements before sorting: ");  
for (i=0; i<5; i++)



printf ("%d ", x[i]);
selectionSort(n); /* call selection sort */  
printf ("\n Array Elements after sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
}

selectionSort( int n)
{

int k, p, temp, min;  

if (n== 4)

return (-
1); min = x[n];
p = n;
for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];  

p = k;

}
}
temp = x[n]; /* interchange x[n] and x[p] */ x[n] =  
x[p];
x[p] = temp;  

n++ ;

selectionSort(n);

}

Quick Sort:

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960‘s. It was one of

the first most efficient sorting algorithms. It is an example of a class of algorithms that

work by ―divide and conquer‖ technique.

The quick sort algorithm partitions the original array by rearranging it into two groups.

The first group contains those elements less than some arbitrary chosen value taken

from the set, and the second group contains those elements greater than or equal to

the chosen value. The chosen value is known as the pivot element. Once the array has

been rearranged in this way with respect to the pivot, the same partitioning procedure

is recursively applied to each of the two subsets. When all the subsets have been

partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers up and down which are moved

toward each other in the following fashion:

1.

2.

3.

4.

Repeatedly increase the pointer ‗up‘ until a[up] >= pivot.  

Repeatedly decrease the pointer ‗down‘ until a[down] <= pivot.  

If down > up, interchange a[down] with a[up]

Repeat the steps 1, 2 and 3 till the ‗up‘ pointer crosses the ‗down‘ pointer. If
‗up‘ pointer crosses ‗down‘ pointer, the position for pivot is found and place  
pivot element in ‗down‘ pointer position.



The program uses a recursive function quicksort(). The algorithm of quick sort function  

sorts all elements in an array ‗a‘ between positions ‗low‘ and ‗high‘.

1. It terminates when the condition low >= high is satisfied. This condition will  

be satisfied only when the array is completely sorted.

2. Here we choose the first element as the ‗pivot‘. So, pivot = x[low]. Now it  

calls the partition function to find the proper position j of the element x[low]

i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . . . x[j-1]  
and x[j+1], x[j+2], . . . x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . . .
x[j-1] between positions low and j-1 (where j is returned by the partition  

function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high]  

between positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Algorithm

Sorts the elements a[p], . . . . . ,a[q] which reside in the global array a[n] into

ascending order. The a[n + 1] is considered to be defined and must be greater than all

elements in a[n]; a[n + 1] = + ∝

quicksort (p, q)
{

if ( p < q ) then
{

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element

call quicksort(p, j – 1);  

call quicksort(j + 1 , q);

}
}

partition(a, m, p)
{

v = a[m]; up = m; down = p;  
do
{

repeat
up = up + 1;  

until (a[up] > v);

// a[m] is the partition element

repeat
down = down –

1; until (a[down] < v);
if (up < down) then call interchange(a, up,  

down); } while (up > down);

a[m] = a[down];  
a[down] = v;  
return (down);

}



interchange(a, up, down)
{

p = a[up];
a[up] = a[down];  

a[down] = p;

}

Example:

Select first element as the pivot element. Move ‗up‘ pointer from left to right in search

of an element larger than pivot. Move the ‗down‘ pointer from right to left in search of

an element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the ‗up‘ pointer crosses the ‗down‘ pointer. If ‗up‘ pointer

crosses ‗down‘ pointer, the position for pivot is found and interchange pivot and

element at ‗down‘ position.

Let us consider the following example with 13 elements to analyze quick sort:

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot up down
swap up &  

down

pivot 04 79

pivot up down
swap up &  

down

pivot 02 57

pivot down up
swap pivot  
& down

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)

pivot down up
swap pivot

& down

(02 08 16 06 04) 24

pivot
,  

down

up
swap pivot  

& down

02 (08 16 06 04)

pivot up down
swap up &

down

pivot 04 16

pivot down Up

(06 04) 08 (16)
swap pivot

& down

pivot down up

(04) 06
swap pivot  

& down

04
pivot,

down,
up

16
pivot,  

down

,
up

(02 04 06 08 16 24) 38



(56 57 58 79 70 45)

pivot up down swap up &
down

pivot 45 57

pivot down up
swap pivot  

& down

(45) 56 (58 79 70 57)

45

swap pivot  
& down

pivot,
down

,  
up

(58
pivot

79
up

70
57)

down
swap up &  

down

57 79

down up

(57) 58 (70 79) swap pivot
& down

57
pivot,  

down

,
up

(70 79)

pivot,  
down

up swap pivot  
& down

70

79
pivot,
down,  

up

(45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Recursive program for Quick Sort:

# include<stdio.h>  

# include<conio.h>

void quicksort(int, int);  

int partition(int, int); void  

interchange(int, int); int  

array[25];

int main()
{

int num, i = 0;  
clrscr();
printf( "Enter the number of elements: " );  

scanf( "%d", &num);

printf( "Enter the elements: " );  

for(i=0; i < num; i++)

scanf( "%d", &array[i] );  

quicksort(0, num -1);

printf( "\nThe elements after sorting are: " );
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for(i=0; i < num; i++)
printf("%d ", array[i]);  

return 0;
}

void quicksort(int low, int high)
{

int pivotpos;  
if( low < high )
{

pivotpos = partition(low, high + 1);  

quicksort(low, pivotpos - 1);  

quicksort(pivotpos + 1, high);

}
}

int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do
{

do
up = up + 1;  

while(array[up] < pivot );

do

down = down - 1;

while(array[down] > pivot);

if(up < down) interchange(up,  

down);

} while(up < down);  

array[low] = array[down];  

array[down] = pivot;  

return down;

}

void interchange(int i, int j)
{

int temp;
temp = array[i];  

array[i] = array[j];  

array[j] = temp;

}



X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]

65 45 60 40 25 50 55 30

Priority Queue, Heap and Heap Sort:

Heap is a data structure, which permits one to insert elements into a set and also to

find the largest element efficiently. A data structure, which provides these two

operations, is called a priority queue.

Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is  

greater than or equal to those in its children.

95 15

85 45 45 25

75 25 35 15 55 65 35 75

55 65 Max heap 85 95 Min heap

A min heap is an almost complete binary tree such that the value of each node is less  

than or equal to those in its children.

Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using

one dimensional array. This provides a very convenient way of figuring out where

children belong to.

• The root of the tree is in location 1.

• The left child of an element stored at location i can be found in location 2*i.

• The right child of an element stored at location i can be found in location 2*i+1.

• The parent of an element stored at location i can be found at location floor(i/2).

The elements of the array can be thought of as lying in a tree structure. A heap tree  

represented using a single array looks as follows:

x[1]

65 x[ 3]

x[ 2]
45 60

x[ 4]
x[6] x[7]

40 x[ 5] 25 50 55

x[ 8] 30 He a p T re e



Operations on heap tree:

The major operations required to be performed on a heap tree:

1.

2.

3.

Insertion,  

Deletion and  

Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the

properties of heap tree. Using repeated insertions of data, starting from an empty heap

tree, one can build up a heap tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have to

adjoin the data in the complete binary tree. Next, we have to compare it with the data

in its parent; if the value is greater than that at parent then interchange the values.

This will continue between two nodes on path from the newly inserted node to the root

node till we get a parent whose value is greater than its child or we reached the root.

For illustration, 35 is added as the right child of 80. Its value is compared with its
parent‘s value, and to be a max heap, parent‘s value greater than child‘s value is
satisfied, hence interchange as well as further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap

tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it requires

interchange. Next, 90 is compared with 80, another interchange takes place. Now, our

process stops here, as 90 is now in root node. The path on which these comparisons

and interchanges have taken places are shown by dashed line.

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)
{

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1]  

int i, n;

i = n;
item = a[n];
while ( (i > 1) and (a[ i/2 ] < item ) do
{

a[i] = a[  i/2 ] ; // move the parent down  

i = i/2 ;

}
a[i] = item ;  

return true ;

}

Example:

Form a heap using the above algorithm for the data: 40, 80, 35, 90, 45, 50, 70.

1. Insert 40:

40



2. Insert 80:

80 40

40 80

3. Insert 35:

80

40 35

4. Insert 90:

80

90

80

90

40 35

40

90

5. Insert 45:

90

80 35

40 45

6. Insert 50:

80

40

90

80 35

40

90
50

90

80 35

35

40 45 50

7. Insert 70:

90

70

80 50

50

40 45 35 70

80 50

40 45 35

90

80 70

40 45 35 50



Deletion of a node from heap tree:

Any node can be deleted from a heap tree. But from the application point of view,

deleting the root node has some special importance. The principle of deletion is as

follows:

• Read the root node into a temporary storage say, ITEM.

• Replace the root node by the last node in the heap tree. Then re-heap the  

tree as stated below:

• Let newly modified root node be the current node. Compare its value

with the value of its two child. Let X be the child whose value is the

largest. Interchange the value of X with the value of the current

node.

• Make X as the current node.

• Continue re-heap, if the current node is not an empty node.

The algorithm for the above is as follows:

delmax (a, n, x)
// delete the maximum from the heap a[n] and store it in x
{

if (n = 0) then
{

write (―heap is empty‖);  

return false;
}
x = a[1]; a[1] = a[n];
adjust (a, 1, n-1);  

return true;

}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to  

form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //

{
j = 2 *i ;  
item = a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;
// compare left and right child and let j be the larger  

child if (item > a (j)) then break;

// a position for item is found else  

a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * j;

}
a [ j / 2 ] = item;

}

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by
26 and this node with data 26 is removed from the tree. Next 26 at root node is  
compared with its two child 45 and 63. As 63 is greater, they are interchanged. Now,



26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are  

interchanged. Now, 26 appears as the leave node, hence re-heap is completed.

26 63

99

45

26  57 63

63
45 57

26

35 29 57 42
35 29 26 42

27 12 24 26
27 12 24

Aft er De le t io n of no de w it h dat a 99De le t ing t he no de w it h dat a 99

Merging two heap trees:

Consider, two heap trees H1 and H2. Merging the tree H2 with H1 means to include all

the node from H2 to H1. H2 may be min heap or max heap and the resultant tree will

be min heap if H1 is min heap else it will be max heap. Merging operation consists of

two steps: Continue steps 1 and 2 while H2 is not empty:

1.

2.

Delete the root node, say x, from H2. Re-heap H2.  

Insert the node x into H1 satisfying the property of H1.

92 13

59 67 19 80

38 45 92 93 96

H1: max heap H2: min heap

+

96

93 67

80 92 13 19

38 59 45 92
Resultant max heap after merging H1 and H2

Application of heap tree:

They are two main applications of heap trees known are:

1.

2.

Sorting (Heap sort) and  

Priority queue implementation.
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HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special type

of binary tree called a heap. Any kind of data can be sorted either in ascending order or

in descending order using heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a. Remove the top most item (the largest) and replace it with the last  

element in the heap.

b.

c.

Re-heapify the complete binary tree.  

Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-

decreasing order. First transform the elements into a heap.

heapsort(a, n)
{

heapify(a, n);
for i = n to 2 by – 1 do
{

temp = a[i];

a[i] = a[1];

a[1] = temp;

adjust (a, 1, i – 1);
}

}

heapify (a, n)
//Readjust the elements in a[n] to form a heap.
{

for i n/2 to 1 by – 1 do adjust (a, i, n);
}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to  

form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //

{
j = 2 *i ;  

item = a[i] ;

while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;
// compare left and right child and let j be the larger  

child if (item > a (j)) then break;

// a position for item is found else  

a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * j;

}
a [ j / 2 ] = item;

}



Time Complexity:

Each ‗n‘ insertion operations takes O(log k), where ‗k‘ is the number of elements in the

heap at the time. Likewise, each of the ‗n‘ remove operations also runs in time O(log

k), where ‗k‘is the number of elements in the heap at the time.

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst

case.

Thus, for ‗n‘ elements it takes O(n log n) time, so the priority queue sorting algorithm

runs in O(n log n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data

using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion  
operation:

40 40

80 35 80 70

90 45 50 70 90 45 50 35

90
40

40 70
90 70

80 45 50 35
80 45 50 35

90

80 70

40 45 50 35



1. Exchange root 90 with the last element 35 of the array and re-heapify

80
35 80

45 35

80 70 45 70

40 50 90 40 35 50 9045

35

2. Exchange root 80 with the last element 50 of the array and re-heapify  

70

50 70

45 70 50 45 50

40 35 80 90 40 35 80 90

3. Exchange root 70 with the last element 35 of the array and re-heapify  

50

35 50

35

45 50 45 35

40 70 80 90 40 70 80 90

4. Exchange root 50 with the last element 40 of the array and re-heapify

45 40 45

40

45 35 40 35

50 70 80 90 50 70 80 90

5. Exchange root 45 with the last element 35 of the array and re-heapify  

40

35 40

35

40 45 35 45

50 70 80 90 50 70 80 90

6. Exchange root 40 with the last element 35 of the array and re-heapify

35

40 45

9050 70 80

The sorted tree



Program for Heap Sort:

void adjust(int i, int n, int a[])
{

int j, item; j
= 2 * i;  

item = a[i];

while(j <= n)
{

if((j < n) && (a[j] < a[j+1]))  

j++;

if(item >= a[j])
break;

else
{

a[j/2] = a[j];  

j = 2*j;

}
}
a[j/2] = item;

}

void heapify(int n, int a[])
{

int i;
for(i = n/2; i > 0; i--)

adjust(i, n, a);
}

void heapsort(int n,int a[])
{

int temp, i;  

heapify(n, a);

for(i = n; i > 0; i--)
{

temp = a[i];  

a[i] = a[1];  

a[1] = temp;

adjust(1, i - 1, a);
}

}

void main()
{

int i, n, a[20];  
clrscr();
printf("\n How many element you want: ");  

scanf("%d", &n);

printf("Enter %d elements: ",  
n); for (i=1; i<=n; i++)

scanf("%d", &a[i]);  
heapsort(n, a);
printf("\n The sorted elements are: \n");  

for (i=1; i<=n; i++)

printf("%5d",  
a[i]); getch();

}



Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Priority 5 4 3 4 5 5 3 2 1 5

Priority queue implementation using heap tree:

Priority queue can be implemented using circular array, linked list etc. Another

simplified implementation is possible using heap tree; the heap, however, can be

represented using an array. This implementation is therefore free from the complexities

of circular array and linked list but getting the advantages of simplicities of array.

As heap trees allow the duplicity of data in it. Elements associated with their priority

values are to be stored in from of heap tree, which can be formed based on their

priority values. The top priority element that has to be processed first is at the root; so

it can be deleted and heap can be rebuilt to get the next element to be processed, and

so on. As an illustration, consider the following processes with their priorities:

These processes enter the system in the order as listed above at time 0, say. Assume

that a process having higher priority value will be serviced first. The heap tree can be

formed considering the process priority values. The order of servicing the process is

successive deletion of roots from the heap.

Exercises

1. Write a recursive ―C‖function to implement binary search and compute its  

time complexity.

2. Find the expected number of passes, comparisons and exchanges for

bubble sort when the number of elements is equal to ―10‖. Compare these

results with the actual number of operations when the given sequence is as

follows: 7, 1, 3, 4, 10, 9, 8, 6, 5, 2.

3. An array contains ―n‖ elements of numbers. The several elements of this

array may contain the same number ―x‖.Write an algorithm to find the total

number of elements which are equal to ―x‖ and also indicate the position of

the first such element in the array.

4. When a ―C‖ function to sort a matrix row-wise and column-wise. Assume  

that the matrix is represented by a two dimensional array.

5. A very large array of elements is to be sorted. The program is to be run on
a personal computer with limited memory. Which sort would be a better
choice: Heap sort or Quick sort? Why?

6. Here is an array of ten integers: 5 3 8 9 1 7 0 2 6 4
Suppose we partition this array using quicksort's partition function and  
using 5 for the pivot. Draw the resulting array after the partition finishes.

7. Here is an array which has just been partitioned by the first step of

quicksort: 3, 0, 2, 4, 5, 8, 7, 6, 9. Which of these elements could be the

pivot? (There may be more than one possibility!)

8. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13,  

and 2, one at a time, into an initially empty binary heap.

9. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort.



10. Show how heap sort processes the input 142, 543, 123, 65, 453, 879, 572,
434, 111, 242, 811, 102.

11. Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quick sort with median-of-three  
partitioning and a cutoff of 3.

Multiple Choice Questions

1. What is the worst-case time for serial search finding a single item in an  

array?
[ D ]

A. Constant time
B. Quadratic time

C. Logarithmic time
D. Linear time

2. What is the worst-case time for binary search finding a single item in an  

array?
[ B ]

A. Constant time
B. Quadratic time

C. Logarithmic time
D. Linear time

3. What additional requirement is placed on an array, so that binary search  
may be used to locate an entry?

A. The array elements must form a heap.
B. The array must have at least 2 entries
C. The array must be sorted.
D. The array's size must be a power of two.

[ C ]

4. Which searching can be performed recursively ? [ B ]

A. linear search
B. both

C. Binary search
D. none

5. Which searching can be performed iteratively ? [ B ]

A. linear search
B. both

C. Binary search
D. none

6. In a selection sort of n elements, how many times is the swap function  

called in the complete execution of the algorithm?
[ B ]

A. 1

B. n2

C. n - 1

D. n log n

7. Selection sort and quick sort both fall into the same category of sorting  

algorithms. What is this category?
[ B ]

A. O(n log n) sorts
B. Interchange sorts

C. Divide-and-conquer sorts
D. Average time is quadratic

8. Suppose that a selection sort of 100 items has completed 42 iterations of  

the main loop. How many items are now guaranteed to be in their final spot  

(never to be moved again)?

[ C ]

A. 21
B. 41

C. 42
D. 43

9. When is insertion sort a good choice for sorting an array?

A. Each component of the array requires a large amount of memory
B. The array has only a few items out of place
C. Each component of the array requires a small amount of memory
D. The processor speed is fast

[ B ]



10. What is the worst-case time for quick sort to sort an array of n elements? [ D ]

A. O(log n)
B. O(n)

C. O(n log n)
D. O(n²)

11. Suppose we are sorting an array of eight integers using quick sort, and we [ A ]  

have just finished the first partitioning with the array looking like this:

2 5 1 7 9 12 11 10 Which statement is correct?

A. The pivot could be either the 7 or the 9.
B. The pivot is not the 7, but it could be the 9.
C. The pivot could be the 7, but it is not the 9.
D. Neither the 7 nor the 9 is the pivot

12. What is the worst-case time for heap sort to sort an array of n elements? [ C ]

A. O(log n)
B. O(n)

C. O(n log n)
D. O(n²)

13. Suppose we are sorting an array of eight integers using heap sort, and we [ B ]  

have just finished one of the reheapifications downward. The array now

looks like this: 6 4 5 1 2 7 8
How many reheapifications downward have been performed so far?

A. 1
B. 3 or 4

C. 2
D. 5 or 6

14. Time complexity of inserting an element to a heap of n elements is of the  

order of
[ A ]

A. log2 n

B. n2

C. n log2n

D. n

15. A min heap is the tree structure where smallest element is available at the [ B ]

A. leaf
B. root

C. intermediate parent
D. any where

16. In the quick sort method , a desirable choice for the portioning element will [ C ]  

be

A. first element of list
B. last element of list

C. median of list
D. any element of list

17. Quick sort is also known as
A. merge sort
B. bubble sort

[ D ]

C. heap sort
D. none

18. Which design algorithm technique is used for quick sort . [ A ]

A. Divide and conqueror
B. greedy

C. backtrack
D. dynamic programming

19. Which among the following is fastest sorting technique (for unordered data) [ C ]

A. Heap sort
B. Selection Sort

C. Quick Sort
D. Bubble sort

20. In which searching technique elements are eliminated by half in each pass . [ C ]

A. Linear search
B. both

C. Binary search
D. none

21. Running time of Heap sort algorithm is -----. [ B ]
A. O( log2 n)

B. A. O( n log2 n)

C. O(n)

D. O(n2)



22. Running time of Bubble sort algorithm is -----. [ D ]
A. O( log2 n)

B. A. O( n log2 n)

C. O(n)

D. O(n2)

23. Running time of Selection sort algorithm is -----. [ D ]
A. O( log2 n)

B. A. O( n log2 n)

C. O(n)

D. O(n2)

24. The Max heap constructed from the list of numbers 30,10,80,60,15,55 is [ C ]

A. 60,80,55,30,10,15
B. 80,60,55,30,10,15

C. 80,55,60,15,10,30
D. none

25. The number of swappings needed to sort the numbers 8,22,7,9,31,19,5,13 [ D ]  

in ascending order using bubble sort is

A. 11
B. 12

C. 13
D. 14

26. Time complexity of insertion sort algorithm in best case is
A. O( log2 n) C. O(n)

B. A. O( n log2 n) D. O(n2)

[ C ]

27. Binary search algorithm performs efficiently on a
A. linked list C. array
B. both D. none

[ C ]

28. Which is a stable sort ?
A. Bubble sort C. Quick sort
B. Selection Sort D. none

[ D ]

29. Heap is a good data structure to implement
A. priority Queue C. linear queue
B. Deque D. none

[ A ]

30. Always Heap is a
A. complete Binary tree C. Full Binary tree
B. Binary Search Tree D. none

[ A ]



Chapter

4
Stack and Queue

There are certain situations in computer science that one wants to

restrict insertions and deletions so that they can take place only at the

beginning or the end of the list, not in the middle. Two of such data

structures that are useful are:

 Stack.

 Queue.

Linear lists and arrays allow one to insert and delete elements at any  

place in the list i.e., at the beginning, at the end or in the middle.

• STACK:

A stack is a list of elements in which an element may be inserted or deleted only at one
end, called the top of the stack. Stacks are sometimes known as LIFO (last in, first out)
lists.

As the items can be added or removed only from the top i.e. the last item to be added
to a stack is the first item to be removed.

The two basic operations associated with stacks are:

5. Push: is the term used to insert an element into a stack.

6. Pop: is the term used to delete an element from a stack.

―Push‖ is the term used to insert an element into a stack. ―Pop‖ is the term used to delete

an element from the stack.

All insertions and deletions take place at the same end, so the last element added to

the stack will be the first element removed from the stack. When a stack is created, the

stack base remains fixed while the stack top changes as elements are added and

removed. The most accessible element is the top and the least accessible element is

the bottom of the stack.

• Representation of Stack:

Let us consider a stack with 6 elements capacity. This is called as the size of the stack.

The number of elements to be added should not exceed the maximum size of the stack.

If we attempt to add new element beyond the maximum size, we will encounter a stack

overflow condition. Similarly, you cannot remove elements beyond the base of the

stack. If such is the case, we will reach a stack underflow condition.

When an element is added to a stack, the operation is performed by push(). Figure 4.1

shows the creation of a stack and addition of elements using push().
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Figure 4.1. Push operations on stack

When an element is taken off from the stack, the operation is performed by pop().
Figure 4.2 shows a stack initially with three elements and shows the deletion of
elements using pop().
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Figure 4.2. Pop operations on stack

Source code for stack operations, using array:

5. include <stdio.h>
6. include <conio.h>
7. include <stdlib.h>
8.define MAX 6  int
stack[MAX];
int top = 0;
int menu()
{

int ch;  
clrscr();
printf("\n … Stack operations using ARRAY... ");
printf("\n -----------**********-------------\n");
printf("\n 1. Push ");
printf("\n 2. Pop ");  
printf("\n 3. Display");  
printf("\n 4. Quit ");  
printf("\n Enter your choice:  
"); scanf("%d", &ch);  
return ch;

}
void display()
{

int i;
if(top == 0)
{

printf("\n\nStack empty..");



return;
}
else
{

printf("\n\nElements in stack:");  

for(i = 0; i < top; i++)

printf("\t%d", stack[i]);
}

}

void pop()
{

if(top == 0)
{

printf("\n\nStack Underflow..");  
return;

}
else

printf("\n\npopped element is: %d ", stack[--top]);
}

void push()
{

int data;
if(top == MAX)
{

printf("\n\nStack Overflow..");  
return;

}
else
{

printf("\n\nEnter data: ");  
scanf("%d", &data);  
stack[top] = data;

top = top + 1;
printf("\n\nData Pushed into the stack");

}
}

void main()
{

int ch;  
do

{
ch = menu();  
switch(ch)
{

case 1:
push();  
break;

case 2:
pop();  

break;

case 3:
display();  
break;

case 4:
exit(0);

}
getch();

} while(1);

}
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\{ Linked List Implementation of Stack:

We can represent a stack as a linked list. In a stack push and pop operations are

performed at one end called top. We can perform similar operations at one end of list

using top pointer. The linked stack looks as shown in figure 4.3.

Figure 4.3. Linked stack  

representation

Source code for stack operations, using linked list:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct stack
{

int data;
struct stack *next;

};

void push();  
void pop();  

void display();

typedef struct stack node;  
node *start=NULL;
node *top = NULL;

node* getnode()
{

node *temp;
temp=(node *) malloc( sizeof(node)) ;  
printf("\n Enter data ");
scanf("%d", &temp -> data);
temp -> next = NULL; return
temp;

}
void push(node *newnode)
{

node *temp;
if( newnode == NULL )
{

printf("\n Stack Overflow..");  
return;

}



if(start == NULL)
{

start = newnode;  
top = newnode;

}
else
{

temp = start;
while( temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;  
top = newnode;

}
printf("\n\n\t Data pushed into stack");

}
void pop()
{

node *temp;  
if(top == NULL)
{

printf("\n\n\t Stack  
underflow"); return;

}
temp = start;
if( start -> next == NULL)
{

printf("\n\n\t Popped element is %d ", top -> data);  
start = NULL;
free(top);  
top = NULL;

}
else
{

while(temp -> next != top)
{

temp = temp -> next;
}
temp -> next = NULL;
printf("\n\n\t Popped element is %d ", top -> data);  
free(top);

top = temp;
}

}
void display()
{

node *temp;  
if(top == NULL)
{

printf("\n\n\t\t Stack is empty ");
}
else
{

temp = start;
printf("\n\n\n\t\t Elements in the stack: \n");  
printf("%5d ", temp -> data);
while(temp != top)
{

temp = temp -> next;  
printf("%5d ", temp -> data);

}
}

}
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char menu()
{

char ch;  

clrscr();

printf("\n \tStack operations using pointers.. ");
printf("\n -----------**********-------------\n");
printf("\n 1. Push ");
printf("\n 2. Pop ");  
printf("\n 3. Display");  
printf("\n 4. Quit ");  
printf("\n Enter your choice:

"); ch = getche();  
return ch;

}

void main()
{

char ch;
node *newnode;  
do

{
ch = menu();  
switch(ch)

{
case '1' :

newnode = getnode();

push(newnode); break;

case '2' :
pop();  
break;

case '3' :
display();  

break;

case '4':

return;

}
getch();

} while( ch != '4' );
}

Algebraic Expressions:

An algebraic expression is a legal combination of operators and operands. Operand is

the quantity on which a mathematical operation is performed. Operand may be a

variable like x, y, z or a constant like 5, 4, 6 etc. Operator is a symbol which signifies a

mathematical or logical operation between the operands. Examples of familiar

operators include +, -, *, /, ^ etc.

An algebraic expression can be represented using three different notations. They are

infix, postfix and prefix notations:

Infix: It is the form of an arithmetic expression in which we fix (place) the  

arithmetic operator in between the two operands.

Example: (A + B) * (C - D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic  
operator before (pre) its two operands. The prefix notation is called as
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polish notation (due to the polish mathematician Jan Lukasiewicz in the  

year 1920).

Example: * + A B – C D

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic

operator after (post) its two operands. The postfix notation is called as

suffix notation and is also referred to reverse polish notation.

Example: A B + C D - *

The three important features of postfix expression are:

1. The operands maintain the same order as in the equivalent infix expression.

2. The parentheses are not needed to designate the expression un-

ambiguously.

3. While evaluating the postfix expression the priority of the operators is no  

longer relevant.

We consider five binary operations: +, -, *, / and $ or ↑ (exponentiation). For these  

binary operations, the following in the order of precedence (highest to lowest):

OPERATOR PRECEDENCE VALUE

Exponentiation ($ or ↑ or ^) Highest 3

*, / Next highest 2

+, - Lowest 1

Converting expressions using Stack:

Let us convert the expressions from one type to another. These can be done as follows:

1 Infix to postfix
2 Infix to prefix
3 Postfix to infix
4 Postfix to prefix
5 Prefix to infix
6 Prefix to postfix

Conversion from infix to postfix:

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix  

expression (output).
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SYMBOL POSTFIX STRING STACK REMARKS

( (

( ( (

A A ( (

- A ( ( -

( A ( ( - (

B A B ( ( - (

+ A B ( ( - ( +

C A B C ( ( - ( +

) A B C + ( ( -

) A B C + - (

* A B C + - ( *

D A B C + - D ( *

) A B C + - D *

↑ A B C + - D * ↑

( A B C + - D * ↑ (

E A B C + - D * E ↑ (

+ A B C + - D * E ↑ ( +

F A B C + - D * E F ↑ ( +

) A B C + - D * E F + ↑

End of  
string A B C + - D * E F + ↑

The input is now empty. Pop the output symbols  
from the stack until it is empty.

9. If the symbol scanned is a right parenthesis, then go on popping all

the items from the stack and place them in the postfix expression till

we get the matching left parenthesis.

10. If the scanned symbol is an operator, then go on removing all the

operators from the stack and place them in the postfix expression, if

and only if the precedence of the operator which is on the top of the

stack is greater than (or greater than or equal) to the precedence of

the scanned operator and push the scanned operator onto the stack

otherwise, push the scanned operator onto the stack.

Example 1:

Convert ((A – (B + C)) * D) ↑ (E + F) infix expression to postfix form:

Example 2:

Convert a + b * c + (d * e + f) * g the infix expression into postfix form.

SYMBOL POSTFIX STRING STACK REMARKS

a a

+ a +

b a b +
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SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +

B A B +

* A B + *

C A B C + *

- A B C * + -

D A B C * + D -

/ A B C * + D - /

E A B C * + D E - /

* A B C * + D E / - *

H A B C * + D E / H - *

End of  
string A B C * + D E / H * -

The input is now empty. Pop the output symbols from  
the stack until it is empty.

* a b + *

c a b c + *

+ a b c * + +

( a b c * + + (

d a b c * + d + (

* a b c * + d + ( *

e a b c * + d e + ( *

+ a b c * + d e * + ( +

f a b c * + d e * f + ( +

) a b c * + d e * f + +

* a b c * + d e * f + + *

g a b c * + d e * f + g + *

End of  
string

a b c * + d e * f + g * + The input is now empty. Pop the output symbols  
from the stack until it is empty.

Example 3:

Convert the following infix expression A + B * C – D / E * H into its equivalent postfix  

expression.

Example 4:

Convert the following infix expression A + (B * C – (D / E ↑ F) * G) * H into its  

equivalent postfix expression.

SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +
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( A + (

B A B + (

* A B + ( *

C A B C + ( *

- A B C * + ( -

( A B C * + ( - (

D A B C * D + ( - (

/ A B C * D + ( - ( /

E A B C * D E + ( - ( /

↑ A B C * D E + ( - ( / ↑

F A B C * D E F + ( - ( / ↑

) A B C * D E F ↑ / + ( -

* A B C * D E F ↑ / + ( - *

G A B C * D E F ↑ / G + ( - *

) A B C * D E F ↑ / G * - +

* A B C * D E F ↑ / G * - + *

H A B C * D E F ↑ / G * - H + *

End of  
string

A B C * D E F ↑ / G * - H * + The input is now empty. Pop the output  
symbols from the stack until it is empty.

1. Program to convert an infix to postfix expression:

# include <string.h>

char postfix[50];  
char infix[50];
char opstack[50]; /* operator stack */ int i, j, top =  
0;

int lesspriority(char op, char op_at_stack)
{

int k;
int pv1;  
int pv2;

/* priority value of op */
/* priority value of op_at_stack */

char operators[] = {'+', '-', '*', '/', '%', '^', '(' };  
int priority_value[] = {0,0,1,1,2,3,4};

if( op_at_stack == '(' )  
return 0;

for(k = 0; k < 6; k ++)
{

if(op == operators[k])
pv1 = priority_value[k];

}
for(k = 0; k < 6; k ++)
{

if(op_at_stack == operators[k])  
pv2 = priority_value[k];

}
if(pv1 < pv2)

return 1;

else
return 0;

}



void push(char op)
{

if(top == 0)
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/* op - operator */

/* before pushing the operator  
'op' into the stack check priority  
of op with top of opstack if less  
then pop the operator from stack  
then push into postfix string else  
push op onto stack itself */

{
opstack[top] = op;  

top++;

}
else
{

if(op != '(' )
{

while(lesspriority(op, opstack[top-1]) == 1 && top > 0)
{

postfix[j] = opstack[--
top]; j++;

}
}
opstack[top] = op; /* pushing onto stack */  
top++;

}
}

pop()
{

/* pop until '(' comes */while(opstack[--top] != '(' )
{

postfix[j] = opstack[top];  
j++;

}

}

void main()
{

char ch;  

clrscr();

printf("\n Enter Infix Expression : ");  
gets(infix);
while( (ch=infix[i++]) != ‗\0‘)
{

switch(ch)
{

case ' ' : break;
case '(' :
case  '+' :

case  '-' :

case  '*' :

case  '/' :

case  '^' :

case '%' :

push(ch); /* check priority and push */ break;

case ')' :
pop();  

break;
default :

postfix[j] = ch;  

j++;
}

}
while(top >= 0)
{

postfix[j] = opstack[--top];  
j++;



}
postfix[j] = '\0';
printf("\n Infix Expression : %s ", infix);  
printf("\n Postfix Expression : %s ", postfix);  
getch();

}

• Conversion from infix to prefix:

The precedence rules for converting an expression from infix to prefix are identical. The

only change from postfix conversion is that traverse the expression from right to left

and the operator is placed before the operands rather than after them. The prefix form

of a complex expression is not the mirror image of the postfix form.

Example 1:

Convert the infix expression A + B - C into prefix expression.

SYMBOL
PREFIX  
STRING

STACK REMARKS

C C

- C -

B B C -

+ B C - +

A A B C - +

End of  
string

- + A B C The input is now empty. Pop the output symbols from the  
stack until it is empty.

Example 2:

Convert the infix expression (A + B) * (C - D) into prefix expression.

SYMBOL
PREFIX  
STRING

STACK REMARKS

) )

D D )

- D ) -

C C D ) -

( - C D

* - C D *

) - C D * )

B B - C D * )

+ B - C D * ) +

A A B - C D * ) +

( + A B – C D *

End of

string

* + A B – C D The input is now empty. Pop the output symbols from the

stack until it is empty.



Example 3:

Convert the infix expression A ↑ B * C – D + E / F / (G + H) into prefix expression.

SYMBOL PREFIX STRING STACK REMARKS

) )

H H )

+ H ) +

G G H ) +

( + G H

/ + G H /

F F + G H /

/ F + G H / /

E E F + G H / /

+ / / E F + G H +

D D / / E F + G H +

- D / / E F + G H + -

C C D / / E F + G H + -

* C D / / E F + G H + - *

B B C D / / E F + G H + - *

↑ B C D / / E F + G H + - * ↑

A A B C D / / E F + G H + - * ↑

End of  
string

+ - * ↑ A B C D / / E F + G H The input is now empty. Pop the output  
symbols from the stack until it is empty.

1. Program to convert an infix to prefix expression:

11.
12.

include <conio.h>  
include <string.h>

char prefix[50];  

char infix[50];

char opstack[50]; /* operator stack */ int j, top = 0;

void insert_beg(char ch)
{

int k;
if(j == 0)

prefix[0] = ch;
else
{

for(k = j + 1; k > 0; k--)
prefix[k] = prefix[k - 1];  

prefix[0] = ch;
}
j++;

}



int lesspriority(char op, char op_at_stack)
{

int k;
int pv1;  
int pv2;

/* priority value of op */
/* priority value of op_at_stack */

char operators[] = {'+', '-', '*', '/', '%', '^', ')'};  
int priority_value[] = {0, 0, 1, 1, 2, 3, 4};  
if(op_at_stack == ')' )

return 0;
for(k = 0; k < 6; k ++)
{

if(op == operators[k])
pv1 = priority_value[k];

}
for(k = 0; k < 6; k ++)
{

if( op_at_stack == operators[k] )  

pv2 = priority_value[k];

}
if(pv1 < pv2)

return 1;

else
return 0;

}

void push(char op)
{

if(top == 0)
{

/* op – operator */

opstack[top] = op;  
top++;

}
else
{

if(op != ')')
{

/* before pushing the operator 'op' into the stack check priority of op with
top of operator stack if less pop the operator from stack then push into postfix
string else push op onto stack itself */

while(lesspriority(op, opstack[top-1]) == 1 && top > 0)
{

insert_beg(opstack[--top]);
}

}
opstack[top] = op; /* pushing onto stack */  
top++;

}
}

void pop()
{

while(opstack[--top] != ')')  
insert_beg(opstack[top]);

}

/* pop until ')' comes; */

void main()
{

char ch;  
int l, i = 0;  
clrscr();

printf("\n Enter Infix Expression : ");



gets(infix);
l = strlen(infix);  

while(l > 0)

{
ch = infix[--
l]; switch(ch)

{
case ' ' : break;
case ')' :
case  '+' :

case  '-' :

case  '*' :

case  '/' :

case  '^' :

case '%' :

push(ch); /* check priority and push */ break;

case '(' :
pop();  
break;

default :
insert_beg(ch);

}
}
while( top > 0 )
{

insert_beg( opstack[--top]
); j++;

}
prefix[j] = '\0';
printf("\n Infix Expression : %s ", infix);  
printf("\n Prefix Expression : %s ", prefix);  
getch();

}

Conversion from postfix to infix:

Procedure to convert postfix expression to infix expression is as follows:

1. Scan the postfix expression from left to right.

2.

3.

If the scanned symbol is an operand, then push it onto the stack.

If the scanned symbol is an operator, pop two symbols from the stack

and create it as a string by placing the operator in between the operands

and push it onto the stack.

4. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its  

equivalent infix expression.



A

A (((B*C) – ((D/(E^F))*G)) * H)

Symbol

A

B

C

*

D

E

F

^

/

G

*

-

H

*

+

Stack

A B

A B C

A (B*C)

A (B*C) D

A (B*C) D E

A (B*C) D E F

A (B*C) D (E^F)

A (B*C) (D/(E^F))

A (B*C) (D/(E^F)) G

A (B*C) ((D/(E^F))*G)

A ((B*C) – ((D/(E^F))*G))

A ((B*C) – ((D/(E^F))*G)) H

(A + (((B*C) – ((D/(E^F))*G)) * H))

Remarks

Push A

Push B

Push C

Pop two operands and place the  
operator in between the operands and  
push the string.

Push D

Push E

Push F

Pop two operands and place the  
operator in between the operands and  
push the string.
Pop two operands and place the  
operator in between the operands and  
push the string.

Push G

Pop two operands and place the  
operator in between the operands and  
push the string.
Pop two operands and place the  
operator in between the operands and  
push the string.

Push H

Pop two operands and place the  
operator in between the operands and  
push the string.

End of  

string
The input is now empty. The string formed is infix.

Program to convert postfix to infix expression:

# include <stdio.h>
# include <conio.h>
# include <string.h>
# define MAX 100

void pop (char*);  
void push(char*);

char stack[MAX] [MAX];  
int top = -1;



void main()
{

char s[MAX], str1[MAX], str2[MAX], str[MAX];  
char s1[2],temp[2];
int i=0;  
clrscr( ) ;
printf("\Enter the postfix expression;  
"); gets(s);

while (s[i]!='\0')
{

if(s[i] == ' ' ) /*skip whitespace, if any*/  
i++;

if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/')
{

pop(str1);
pop(str2);  
temp[0] ='(';
temp[1] ='\0';  
strcpy(str, temp);  
strcat(str, str2);  
temp[0] = s[i];
temp[1] = '\0';  
strcat(str,temp);  
strcat(str, str1);  
temp[0] =')';
temp[1] ='\0';  
strcat(str,temp);  
push(str);

}
else
{

temp[0]=s[i];
temp[1]='\0';  
strcpy(s1,  
temp); push(s1);

}  

i++;
}
printf("\nThe Infix expression is: %s", stack[0]);

}

void pop(char *a1)
{

strcpy(a1,stack[top]);  
top--;

}

void push (char*str)
{

if(top == MAX - 1)
printf("\nstack is full");

else
{

top++;  
strcpy(stack[top], str);

}
}



Conversion from postfix to prefix:

Procedure to convert postfix expression to prefix expression is as follows:

1. Scan the postfix expression from left to right.

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack
and create it as a string by placing the operator in front of the operands
and push it onto the stack.

5. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its  

equivalent prefix expression.

Symbol Stack Remarks

A A Push A

B A B Push B

C A B C Push C

*

D

E

F

^

/

G

*

-

H

*

+

A *BC

A *BC D

A *BC D E

A *BC D E F

A *BC D ^EF

A *BC /D^EF

A *BC /D^EF G

A *BC */D^EFG

A - *BC*/D^EFG

A - *BC*/D^EFG H

A *- *BC*/D^EFGH

+A*-*BC*/D^EFGH

Pop two operands and place the operator  
in front the operands and push the string.

Push D

Push E

Push F

Pop two operands and place the operator  
in front the operands and push the string.

Pop two operands and place the operator  
in front the operands and push the string.

Push G

Pop two operands and place the operator  
in front the operands and push the string.

Pop two operands and place the operator  
in front the operands and push the string.

Push H

Pop two operands and place the operator  
in front the operands and push the string.

End of  
string

The input is now empty. The string formed is prefix.



Program to convert postfix to prefix expression:

# include <conio.h>  
# include <string.h>

#define MAX 100  
void pop (char *a1);  
void push(char *str);
char stack[MAX][MAX];  
int top =-1;

main()
{

char s[MAX], str1[MAX], str2[MAX], str[MAX];  
char s1[2], temp[2];
int i = 0;  
clrscr();

printf("Enter the postfix expression;  
"); gets (s);
while(s[i]!='\0')
{
/*skip whitespace, if any */  

if (s[i] == ' ')

i++;
if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/')
{

pop (str1); pop  
(str2); temp[0]
= s[i]; temp[1]
= '\0';
strcpy (str, temp);  
strcat(str, str2);  
strcat(str, str1);  
push(str);

}
else
{

temp[0] = s[i];
temp[1] = '\0';  
strcpy (s1,  

temp); push (s1);

}  
i++;

}

printf("\n The prefix expression is: %s", stack[0]);
}

void pop(char*a1)
{

if(top == -1)
{

printf("\nStack is empty");  
return ;

}
else
{

strcpy (a1,  
stack[top]); top--;

}
}



void push (char *str)
{

if(top == MAX - 1)
printf("\nstack is full");

else
{

top++;  
strcpy(stack[top], str);

}
}

Conversion from prefix to infix:

Procedure to convert prefix expression to infix expression is as follows:

1.

2.

3.

Scan the prefix expression from right to left (reverse order).

If the scanned symbol is an operand, then push it onto the stack.

If the scanned symbol is an operator, pop two symbols from the stack

and create it as a string by placing the operator in between the operands

and push it onto the stack.

4. Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent  

infix expression.

Symbol Stack Remarks

H H Push H

G H G Push G

F H G F Push F

E H G F E Push E

Pop two operands and place the operator

in between the operands and push the  
string.

Push D

Pop two operands and place the operator  

in between the operands and push the  

string.
Pop two operands and place the operator

in between the operands and push the  
string.

Push C

^ H G (E^F)

D H G (E^F) D

/ H G (D/(E^F))

* H ((D/(E^F))*G)

C H ((D/(E^F))*G) C

B H ((D/(E^F))*G) C B

* H ((D/(E^F))*G) (B*C)

- H ((B*C)-((D/(E^F))*G))

Push B

Pop two operands and place the  
operator in front the operands and push  
the string.

Pop two operands and place the operator

in front the operands and push the



(((B*C)-((D/(E^F))*G))*H) A

*

A

+

(((B*C)-((D/(E^F))*G))*H)

(A+(((B*C)-((D/(E^F))*G))*H))

string.

Pop two operands and place the  
operator in front the operands and push  

the string.

Push A

Pop two operands and place the  
operator in front the operands and push  
the string.

End of  

string
The input is now empty. The string formed is infix.

Program to convert prefix to infix expression:

# include <string.h>  
# define MAX 100

void pop (char*);  
void push(char*);
char stack[MAX] [MAX];  
int top = -1;

void main()
{

char s[MAX], str1[MAX], str2[MAX], str[MAX];  
char s1[2],temp[2];
int i=0;  
clrscr( ) ;
printf("\Enter the prefix expression; ");  
gets(s);
strrev(s);
while (s[i]!='\0')
{

/*skip whitespace, if any*/  
if(s[i] == ' ' )

i++;
if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/')
{

pop(str1);
pop(str2);  
temp[0] ='(';

temp[1] ='\0';  

strcpy(str, temp);  

strcat(str, str1);  
temp[0] = s[i];

temp[1] = '\0';
strcat(str,temp);
strcat(str, str2);
temp[0] =')';

temp[1] ='\0';
strcat(str,temp);  
push(str);

}
else
{

temp[0]=s[i];
temp[1]='\0';  
strcpy(s1,  
temp); push(s1);



}  
i++;

}
printf("\nThe infix expression is: %s", stack[0]);

}

void pop(char *a1)
{

strcpy(a1,stack[top]);  
top--;

}

void push (char*str)
{

if(top == MAX - 1)
printf("\nstack is full");

else
{

top++;  
strcpy(stack[top], str);

}
}

Conversion from prefix to postfix:

Procedure to convert prefix expression to postfix expression is as follows:

 Scan the prefix expression from right to left (reverse order).

 If the scanned symbol is an operand, then push it onto the stack.

 If the scanned symbol is an operator, pop two symbols from the stack

and create it as a string by placing the operator after the operands and

push it onto the stack.

 Repeat steps 2 and 3 till the end of the expression.

Example:

Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent  
postfix expression.

Symbol Stack Remarks

H H Push H

G H G Push G

F H G F Push F

E H G F E Push E

^ H G EF^

D H G EF^ D

Pop two operands and place the operator  

after the operands and push the string.

Push D



/

*

C

B

*

-

*

A

+

H G DEF^/

H DEF^/G*

H DEF^/G* C

H DEF^/G* C B

H DEF^/G* BC*

H BC*DEF^/G*-

BC*DEF^/G*-H*

BC*DEF^/G*-H* A

ABC*DEF^/G*-H*+

Pop two operands and place the operator  

after the operands and push the string.

Pop two operands and place the operator  

after the operands and push the string.

Push C

Push B

Pop two operands and place the operator  

after the operands and push the string.

Pop two operands and place the operator  

after the operands and push the string.

Pop two operands and place the operator  

after the operands and push the string.

Push A

Pop two operands and place the operator  

after the operands and push the string.

End of  

string
The input is now empty. The string formed is postfix.

Program to convert prefix to postfix expression:

# include <stdio.h>
# include <conio.h>
# include <string.h>

#define MAX 100

void pop (char *a1);  
void push(char *str);  
char stack[MAX][MAX];  
int top =-1;

void main()
{

char s[MAX], str1[MAX], str2[MAX], str[MAX];  
char s1[2], temp[2];
int i = 0;  
clrscr();
printf("Enter the prefix expression; ");  
gets (s);
strrev(s);  
while(s[i]!='\0')

{
if (s[i] == ' ') /*skip whitespace, if any */ i++;

if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/')
{

pop (str1); pop  
(str2); temp[0]

= s[i]; temp[1]
= '\0';
strcat(str1,str2);  
strcat (str1, temp);  
strcpy(str, str1);  
push(str);

}



else
{

temp[0] = s[i];
temp[1] = '\0';  
strcpy (s1,  
temp); push (s1);

}  
i++;

}
printf("\nThe postfix expression is: %s", stack[0]);

}
void pop(char*a1)
{

if(top == -1)
{

printf("\nStack is empty");  
return ;

}
else
{

strcpy (a1,  
stack[top]); top--;

}
}
void push (char *str)
{

if(top == MAX - 1)
printf("\nstack is full");

else
{

top++;  
strcpy(stack[top], str);

}
}

4.4. Evaluation of postfix expression:

The postfix expression is evaluated easily by the use of a stack. When a number is

seen, it is pushed onto the stack; when an operator is seen, the operator is applied to

the two numbers that are popped from the stack and the result is pushed onto the

stack. When an expression is given in postfix notation, there is no need to know any

precedence rules; this is our obvious advantage.

Example 1:

Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + *

SYMBOL
OPERAN

D  1
OPERAND 2 VALUE STACK REMARKS

6 6

5 6, 5

2 6, 5, 2

3 6, 5, 2, 3
The first four symbols are placed on  
the stack.

+ 2 3 5 6, 5, 5

Next a ‗+‘ is read, so 3 and 2 are  
popped from the stack and their
sum 5, is pushed



8 2 3 5 6, 5, 5, 8 Next 8 is pushed

* 5 8 40 6, 5, 40
Now a ‗*‘ is seen, so 8 and 5 are  
popped as 8 * 5 = 40 is pushed

+ 5 40 45 6, 45
Next, a ‗+‘ is seen, so 40 and 5 are  
popped and 40 + 5 = 45 is pushed

3 5 40 45 6, 45, 3 Now, 3 is pushed

+ 45 3 48 6, 48
Next, ‗+‘ pops 3 and 45 and pushes  
45 + 3 = 48 is pushed

* 6 48 288 288

Finally, a ‗*‘ is seen and 48 and 6  
are popped, the result 6 * 48 =

288 is pushed

Example 2:

Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 ↑ 3 +

SYMBOL OPERAND 1 OPERAND 2 VALUE STACK

6 6

2 6, 2

3 6, 2, 3

+ 2 3 5 6, 5

- 6 5 1 1

3 6 5 1 1, 3

8 6 5 1 1, 3, 8

2 6 5 1 1, 3, 8, 2

/ 8 2 4 1, 3, 4

+ 3 4 7 1, 7

* 1 7 7 7

2 1 7 7 7, 2

↑ 7 2 49 49

3 7 2 49 49, 3

+ 49 3 52 52

Program to evaluate a postfix expression:

2 include <conio.h>
3 include <math.h>
4 define MAX 20

int isoperator(char ch)
{

if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '^')  
return 1;

else
return 0;

}



void main(void)
{

char postfix[MAX];  

int val;

char ch;
int i = 0, top = 0;
float val_stack[MAX], val1, val2,  
res; clrscr();

printf("\n Enter a postfix expression: ");  
scanf("%s", postfix);
while((ch = postfix[i]) != '\0')
{

if(isoperator(ch) == 1)
{

val2 = val_stack[--
top]; val1 = val_stack[-
-top]; switch(ch)
{

case '+':
res = val1 +  
val2; break;

case '-':
res = val1 - val2;  
break;

case '*':
res = val1 * val2;  
break;

case '/':
res = val1 / val2;  
break;

case '^':
res = pow(val1, val2);  
break;

}
val_stack[top] = res;

}
else

val_stack[top] = ch-48; /*convert character digit to integer digit */
top++;  
i++;

}
printf("\n Values of %s is : %f ",postfix, val_stack[0] );  
getch();

}

Applications of stacks:

1. Stack is used by compilers to check for balancing of parentheses, brackets  

and braces.

2. Stack is used to evaluate a postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the  

processor‘s stack.

5. During a function call the return address and arguments are pushed onto a  
stack and on return they are popped off.



Queue:

A queue is another special kind of list, where items are inserted at one end called the

rear and deleted at the other end called the front. Another name for a queue is a

―FIFO‖or ―First-in-first-out‖ list.

The operations for a queue are analogues to those for a stack, the difference is that the

insertions go at the end of the list, rather than the beginning. We shall use the

following operations on queues:

•

•

enqueue: which inserts an element at the end of the queue.

dequeue: which deletes an element at the start of the queue.

Representation of Queue:

Let us consider a queue, which can hold maximum of five elements. Initially the queue  

is empty.

0 1 2 3 4

Que u e E mpt y

F RO NT = REA R = 0

11

F R

Now, insert 11 to the queue. Then queue status will be:

0 1 2 3 4

REA R = REA R + 1 = 1  
F RO NT = 0

F R

11 22

Next, insert 22 to the queue. Then the queue status is:

0 1 2 3 4

REA R = REA R + 1 = 2  
F RO NT = 0

F R

11 22 33

Again insert another element 33 to the queue. The status of the queue is:

0 1 2 3 4

REA R = REA R + 1 = 3  
F RO NT = 0

F R



22 33

Now, delete an element. The element deleted is the element at the front of the queue.  

So the status of the queue is:

0 1 2 3 4

REA R = 3
F RO NT = F R O NT + 1 = 1

33

F R

Again, delete an element. The element to be deleted is always pointed to by the FRONT  

pointer. So, 22 is deleted. The queue status is as follows:

0 1 2 3 4

REA R = 3
F RO NT = F R O NT + 1 = 2

F R

33 44 55

Now, insert new elements 44 and 55 into the queue. The queue status is:

0 1 2 3 4

REA R = 5
F RO NT = 2

F R

33 44 55

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as

the rear crossed the maximum size of the queue (i.e., 5). There will be queue full

signal. The queue status is as follows:

0 1 2 3 4

REA R = 5
F RO NT = 2

33 44 55 66

F R

Now it is not possible to insert an element 66 even though there are two vacant

positions in the linear queue. To over come this problem the elements of the queue are

to be shifted towards the beginning of the queue so that it creates vacant position at

the rear end. Then the FRONT and REAR are to be adjusted properly. The element 66

can be inserted at the rear end. After this operation, the queue status is as follows:

0 1 2 3 4

REA R = 4
F RO NT = 0

F R

This difficulty can overcome if we treat queue position with index 0 as a position that  

comes after position with index 4 i.e., we treat the queue as a circular queue.



Source code for Queue operations using array:

In order to create a queue we require a one dimensional array Q(1:n) and two variables

front and rear. The conventions we shall adopt for these two variables are that front is

always 1 less than the actual front of the queue and rear always points to the last

element in the queue. Thus, front = rear if and only if there are no elements in the

queue. The initial condition then is front = rear = 0. The various queue operations to

perform creation, deletion and display the elements in a queue are as follows:

insertQ(): inserts an element at the end of queue Q.  

deleteQ(): deletes the first element of Q.  

displayQ(): displays the elements in the queue.

8. include <conio.h>
9.define MAX 6  
int Q[MAX];
int front, rear;

void insertQ()
{

int data;
if(rear == MAX)
{

printf("\n Linear Queue is full");  
return;

}
else
{

printf("\n Enter data: ");  
scanf("%d", &data);  
Q[rear] = data; rear++;

printf("\n Data Inserted in the Queue ");
}

}
void deleteQ()
{

if(rear == front)
{

printf("\n\n Queue is Empty..");  
return;

}
else
{

printf("\n Deleted element from Queue is %d",  
Q[front]); front++;

}
}
void displayQ()
{

int i;
if(front == rear)
{

printf("\n\n\t Queue is Empty");  
return;

}
else
{

printf("\n Elements in Queue are:  
"); for(i = front; i < rear; i++)



{
printf("%d\t", Q[i]);

}
}

}
int menu()
{

int ch;  
clrscr();
printf("\n \tQueue operations using ARRAY..");  
printf("\n -----------**********-------------\n");  
printf("\n 1. Insert ");
printf("\n 2. Delete ");  
printf("\n 3. Display");  
printf("\n 4. Quit ");  
printf("\n Enter your choice:

"); scanf("%d", &ch);  
return ch;

}
void main()
{

int ch;  
do

{
ch = menu();  
switch(ch)
{

case 1:
insertQ();  

break;
case 2:

deleteQ();  

break;
case 3:

displayQ();  
break;

case 4:
return;

}
getch();

} while(1);

}

Linked List Implementation of Queue:

We can represent a queue as a linked list. In a queue data is deleted from the front end
and inserted at the rear end. We can perform similar operations on the two ends of a
list. We use two pointers front and rear for our linked queue implementation.

The linked queue looks as shown in figure 4.4:

front

100

rear

400

10 200

100

20 300

200

30 400

300

40 X

400

Figure 4.4. Linked Queue representation



}

Source code for queue operations using linked list:

include <stdlib.h>  

include <conio.h>

struct queue
{

int data;
struct queue *next;

};
typedef struct queue  

node; node *front = NULL;  

node *rear = NULL;

node* getnode()
{

node *temp;
temp = (node *) malloc(sizeof(node)) ;  

printf("\n Enter data ");

scanf("%d", &temp -> data);

temp -> next = NULL; return

temp;

}
void insertQ()
{

node *newnode;  

newnode = getnode();  

if(newnode == NULL)

{
printf("\n Queue Full");  

return;

}
if(front == NULL)
{

front = newnode;  

rear = newnode;

}
else
{

rear -> next = newnode;  

rear = newnode;

}
printf("\n\n\t Data Inserted into the Queue..");

}
void deleteQ()
{

node *temp;  
if(front == NULL)
{

printf("\n\n\t Empty Queue..");  

return;

}
temp = front;
front = front -> next;
printf("\n\n\t Deleted element from queue is %d ", temp ->  

data); free(temp);



}

void displayQ()
{

node *temp;  

if(front == NULL)

{
printf("\n\n\t\t Empty Queue ");

}
else
{

temp = front;
printf("\n\n\n\t\t Elements in the Queue are: ");  
while(temp != NULL )
{

printf("%5d ", temp -> data);  

temp = temp -> next;

}
}

}

char menu()
{

char ch;  

clrscr();

printf("\n \t..Queue operations using pointers.. ");  

printf("\n\t -----------**********-------------

\n"); printf("\n 1. Insert ");  

printf("\n 2. Delete ");  

printf("\n 3. Display");  

printf("\n 4. Quit ");

printf("\n Enter your choice: ");  

ch = getche();

return ch;
}

void main()
{

char ch;  

do

{
ch = menu();  
switch(ch)
{

case '1' :
insertQ();  

break;

case '2' :
deleteQ();  

break;

case '3' :
displayQ();  
break;

case '4':
return;

}
getch();

} while(ch != '4');



Applications of Queue:

1. It is used to schedule the jobs to be processed by the CPU.

2. When multiple users send print jobs to a printer, each printing job is kept in

the printing queue. Then the printer prints those jobs according to first in

first out (FIFO) basis.

3. Breadth first search uses a queue data structure to find an element from a  

graph.

Circular Queue:

A more efficient queue representation is obtained by regarding the array Q[MAX] as

circular. Any number of items could be placed on the queue. This implementation of a

queue is called a circular queue because it uses its storage array as if it were a circle

instead of a linear list.

There are two problems associated with linear queue. They are:

• Time consuming: linear time to be spent in shifting the elements to the  
beginning of the queue.

• Signaling queue full: even if the queue is having vacant position.

33 44 55

For example, let us consider a linear queue status as follows:

0 1 2 3 4

REA R = 5
F RO NT = 2

F R

33 44 55

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as
the rear crossed the maximum size of the queue (i.e., 5). There will be queue full
signal. The queue status is as follows:

0 1 2 3 4

REA R = 5
F RO NT = 2

F R

This difficulty can be overcome if we treat queue position with index zero as a position  

that comes after position with index four then we treat the queue as a circular queue.

In circular queue if we reach the end for inserting elements to it, it is possible to insert  

new elements if the slots at the beginning of the circular queue are empty.



Representation of Circular Queue:

Let us consider a circular queue, which can hold maximum (MAX) of six elements.  

Initially the queue is empty.

F R

5 0

1 Que u e E mpt y  

M A X = 6

F RO NT = REA R = 0
CO U NT = 0

4

3 2

Circ ular Que ue

Now, insert 11 to the circular queue. Then circular queue status will be:

F

5 0
R

11

F RO NT = 0

REA R = ( REA R + 1) % 6 =1  
CO U NT = 1

1
4

3 2

Circ ular Que ue

Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue  

status is:

F
R

5
0

11

4 55
22 1 FRONT = 0

REAR = (REAR + 1) % 6 = 5
COUNT = 5

44 33

3
2

Circular Queue



Now, delete an element. The element deleted is the element at the front of the circular  

queue. So, 11 is deleted. The circular queue status is as follows:

R

0

5

F

4 55
22 1

44 33

3 2

Circ ular Que ue

F RO NT = (F R O NT + 1) % 6 = 1  
REA R = 5
CO U NT = CO U NT - 1 = 4

Again, delete an element. The element to be deleted is always pointed to by the FRONT  

pointer. So, 22 is deleted. The circular queue status is as follows:

R

0

5

4 55
1 F RO NT = (F R O NT + 1) % 6 = 2  

REA R = 5
CO U NT = CO U NT - 1 = 3

44 33

3 2
F

Circ ular Que ue

Again, insert another element 66 to the circular queue. The status of the circular queue  

is:

R

5
0

66

4 55
1

F RO NT = 2
REA R = ( REA R + 1) % 6 =0  

CO U NT = CO U NT + 1 = 4

44 33

3 2

Circ ular Que ue

F



Now, insert new elements 77 and 88 into the circular queue. The circular queue status  

is:

5
0

66 77

4 55
88 1

F RO NT = 2, REA R = 2  
REA R = REA R % 6 = 2  
CO U NT = 6

44 33

3 2 R
F

Circ ular Que ue

Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add the  

element to circular queue. So, the circular queue is full.

Source code for Circular Queue operations, using array:

# include <stdio.h>
# include <conio.h>
# define MAX 6

int CQ[MAX];
int front = 0;  
int rear = 0;  
int count = 0;

void insertCQ()
{

int data;
if(count == MAX)
{

printf("\n Circular Queue is Full");
}
else
{

printf("\n Enter data: ");  
scanf("%d", &data);  
CQ[rear] = data;
rear = (rear + 1) % MAX;  
count ++;

printf("\n Data Inserted in the Circular Queue ");
}

}

void deleteCQ()
{

if(count == 0)
{

printf("\n\nCircular Queue is Empty..");
}
else
{

printf("\n Deleted element from Circular Queue is %d ", CQ[front]);  
front = (front + 1) % MAX;

count --;

}
}



void displayCQ()
{

int i, j;  
if(count == 0)
{

printf("\n\n\t Circular Queue is Empty ");
}
else
{

printf("\n Elements in Circular Queue are: ");  
j = count;
for(i = front; j != 0; j--)
{

printf("%d\t", CQ[i]);  

i = (i + 1) % MAX;

}
}

}

int menu()
{

int ch;  
clrscr();
printf("\n \t Circular Queue Operations using ARRAY..");  
printf("\n -----------**********-------------\n");  
printf("\n 1. Insert ");
printf("\n 2. Delete ");  
printf("\n 3. Display");  
printf("\n 4. Quit ");  
printf("\n Enter Your Choice:
"); scanf("%d", &ch);  

return ch;

}

void main()
{

int ch;  
do
{

ch = menu();  
switch(ch)
{

case 1:
insertCQ();  
break;

case 2:
deleteCQ();  
break;

case 3:
displayCQ();  
break;

case 4:
return;

default:
printf("\n Invalid Choice ");

}
getch();

} while(1);

}



Deque:

In the preceding section we saw that a queue in which we insert items at one end and

from which we remove items at the other end. In this section we examine an extension

of the queue, which provides a means to insert and remove items at both ends of the

queue. This data structure is a deque. The word deque is an acronym derived from

double-ended queue. Figure 4.5 shows the representation of a deque.

Deletion
36 16 56 62 19

Insertion

Insertion Deletion

front rear

Figure 4.5. Representation of a deque.

A deque provides four operations. Figure 4.6 shows the basic operations on a deque.

•

•

•

•

enqueue_front: insert an element at front.  

dequeue_front: delete an element at front.  

enqueue_rear: insert element at rear.  

dequeue_rear: delete element at rear.

11 22 enqueue_front(33) 33 11 22 enqueue_rear(44) 33 11 22 44

dequeue_front(33)

55 11 22 enqueue_front(55) 11 22 dequeue_rear(44) 11 22 44

Figure 4.6. Basic operations on deque

There are two variations of deque. They are:

•

•

Input restricted deque (IRD)  

Output restricted deque (ORD)

An Input restricted deque is a deque, which allows insertions at one end but allows  
deletions at both ends of the list.

An output restricted deque is a deque, which allows deletions at one end but  

allows insertions at both ends of the list.



Priority Queue:

A priority queue is a collection of elements such that each element has been assigned a

priority and such that the order in which elements are deleted and processed comes

from the following rules:

1. An element of higher priority is processed before any element of lower  

priority.

two elements with same priority are processed according to the order in  
which they were added to the queue.

2.

A prototype of a priority queue is time sharing system: programs of high priority are

processed first, and programs with the same priority form a standard queue. An

efficient implementation for the Priority Queue is to use heap, which in turn can be

used for sorting purpose called heap sort.

Exercises

1. What is a linear data structure? Give two examples of linear data structures.

2. Is it possible to have two designs for the same data structure that provide the  

same functionality but are implemented differently?

3. What is the difference between the logical representation of a data structure and  

the physical representation?

4. Transform the following infix expressions to reverse polish notation:
a) A ↑ B * C – D + E / F / (G + H)
b) ((A + B) * C – (D – E)) ↑ (F + G)
c) A – B / (C * D ↑ E)
d) (a + b ↑ c ↑ d) * (e + f / d))  

f) 3 – 6 * 7 + 2 / 4 * 5 – 8

g) (A – B) / ((D + E) * F)
h) ((A + B) / D) ↑ ((E – F) * G)

5. Evaluate the following postfix expressions:  

a) P1: 5, 3, +, 2, *, 6, 9, 7, -, /, -

b) P2: 3, 5, +, 6, 4, -, *, 4, 1, -, 2, ↑, +

c) P3 : 3, 1, +, 2, ↑, 7, 4, -, 2, *, +, 5, -

6. Consider the usual algorithm to convert an infix expression to a postfix

expression. Suppose that you have read 10 input characters during a conversion

and that the stack now contains these symbols:

+
(

*bottom

Now, suppose that you read and process the 11th symbol of the input. Draw the  

stack for the case where the 11th symbol is:

A. A number:
B. A left parenthesis:
C. A right parenthesis:
D. A minus sign:
E. A division sign:



7. Write a program using stack for parenthesis matching. Explain what modifications

would be needed to make the parenthesis matching algorithm check expressions

with different kinds of parentheses such as (), [] and {}'s.

8. Evaluate the following prefix expressions:  

a) + * 2 + / 14 2 5 1

b) - * 6 3 – 4 1
c) + + 2 6 + - 13 2 4

9. Convert the following infix expressions to prefix notation:  

a) ((A + 2) * (B + 4)) -1

b) Z – ((((X + 1) * 2) – 5) / Y)
c) ((C * 2) + 1) / (A + B)
d) ((A + B) * C – (D - E)) ↑ (F + G)
e) A – B / (C * D ↑ E)

10. Write a ―C‖function to copy one stack to another assuming

a) The stack is implemented using array.
b) The stack is implemented using linked list.

11. Write an algorithm to construct a fully parenthesized infix expression from its  
postfix equivalent. Write a ―C‖function for your algorithm.

12. How can one convert a postfix expression to its prefix equivalent and vice-versa?

13. A double-ended queue (deque) is a linear list where additions and deletions can
be performed at either end. Represent a deque using an array to store the
elements of the list and write the ―C‖functions for additions and deletions.

14. In a circular queue represented by an array, how can one specify the number of  

elements in the queue in terms of ―front‖,―rear‖and MAX-QUEUE-SIZE? Write a

―C‖function to delete the K-th element from the ―front‖of a circular queue.

15. Can a queue be represented by a circular linked list with only one pointer pointing

to the tail of the queue? Write ―C‖functions for the ―add‖ and ―delete‖ operations on

such a queue

16. Write a ―C‖function to test whether a string of opening and closing parenthesis is  

well formed or not.

17. Represent N queues in a single one-dimensional array. Write functions for ―add‖and 

―delete‖operations on the ith queue

18. Represent a stack and queue in a single one-dimensional array. Write functions

for ―push‖, ―pop‖operations on the stack and ―add‖,―delete‖ functions on the queue.
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Multiple Choice Questions

1. Which among the following is a linear data structure:
A. Queue
B. Stack
C. Linked List
D. all the above

2. Which among the following is a Dynamic data structure:

[ D ]

[ A ]

C. Stack
D. all the above

A. Double Linked List
B. Queue

3. Stack is referred as:
A. Last in first out list
B. First in first out list

[ A ]

C. both A and B
D. none of the above

4. A stack is a data structure in which all insertions and deletions of entries  
are made at:

[ A ]

A. One end
B. In the middle

C. Both the ends
D. At any position

5. A queue is a data structure in which all insertions and deletions are made [ A ]  

respectively at:

A. rear and front
B. front and front

C. front and rear
D. rear and rear

6. Transform the following infix expression to postfix form:  
(A + B) * (C – D) / E

[ D ]

A. A B * C + D / -
B. A B C * C D / - +

C. A B + C D * - / E
D. A B + C D - * E /

7. Transform the following infix expression to postfix form:  

A - B / (C * D)
[ B ]

A. A B * C D - /
B. A B C D * / -

C. / - D C * B A
D. - / * A B C D

8. Evaluate the following prefix expression: * - + 4 3 5 / + 2 4 3 [ A ]

A. 4
B. 8

C. 1
D. none of the above

9. Evaluate the following postfix expression: 1 4 18 6 / 3 + + 5 / + [ C ]

A. 8

B. 2

C. 3

D. none of the above

10. Transform the following infix expression to prefix form:  

((C * 2) + 1) / (A + B)
[ B ]

A. A B + 1 2 C * + /
B. / + * C 2 1 + A B

C. / * + 1 2 C A B +
D. none of the above

11. Transform the following infix expression to prefix form:  
Z – ((((X + 1) * 2) – 5) / Y)

[ D ]

A. / - * + X 1 2 5 Y
B. Y 5 2 1 X + * - /

C. / * - + X 1 2 5 Y
D. none of the above

12. Queue is also known as:
A. Last in first out list

B. First in first out list

[ B ]
C. both A and B

D. none of the above
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13. One difference between a queue and a stack is:
A. Queues require dynamic memory, but stacks do not.
B. Stacks require dynamic memory, but queues do not.
C. Queues use two ends of the structure; stacks use only one.
D. Stacks use two ends of the structure, queues use only one.

[ C ]

14.  If the characters 'D', 'C', 'B', 'A' are placed in a queue (in that order), and [ D ]  

then removed one at a time, in what order will they be removed?

A. ABCD
B. ABDC

C. DCAB
D. DCBA

15. Suppose we have a circular array implementation of the queue class,  

with ten items in the queue stored at data[2] through data[11]. The  

CAPACITY is 42. Where does the push member function place the new  

entry in the array?

[ D ]

A. data[1]
B. data[2]

C. data[11]
D. data[12]

16. Consider the implementation of the queue using a circular array. What  

goes wrong if we try to keep all the items at the front of a partially-filled  

array (so that data[0] is always the front).

A. The constructor would require linear time.
B. The get_front function would require linear time.
C. The insert function would require linear time.
D. The is_empty function would require linear time.

[ B ]

17. In the linked list implementation of the queue class, where does the push [ A ]  

member function place the new entry on the linked list?

A. At the head
B. At the tail
C. After all other entries that are greater than the new entry.
D. After all other entries that are smaller than the new entry.

18. In the circular array version of the queue class (with a fixed-sized array), [ ]  

which operations require linear time for their worst-case behavior?

A. front
B. push

C. empty
D. None of these.

19. In the linked-list version of the queue class, which operations require  

linear time for their worst-case behavior?
[ ]

A. front
B. push

C. empty
D. None of these operations.

20. To implement the queue with a linked list, keeping track of a front  

pointer and a rear pointer. Which of these pointers will change during an  

insertion into a NONEMPTY queue?

[ B ]

A. Neither changes
B. Only front_ptr changes.

C. Only rear_ptr changes.
D. Both change.

21. To implement the queue with a linked list, keeping track of a front  

pointer and a rear pointer. Which of these pointers will change during an  

insertion into an EMPTY queue?

[ D ]

A. Neither changes
B. Only front_ptr changes.

C. Only rear_ptr changes.
D. Both change.
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22. Suppose top is called on a priority queue that has exactly two entries  

with equal priority. How is the return value of top selected?

A. The implementation gets to choose either one.
B. The one which was inserted first.
C. The one which was inserted most recently.
D. This can never happen (violates the precondition)

[ B ]

23. Entries in a stack are "ordered". What is the meaning of this statement?
A. A collection of stacks can be sorted.
B. Stack entries may be compared with the '<' operation.
C. The entries must be stored in a linked list.
D. There is a first entry, a second entry, and so on.

[ D ]

24. The operation for adding an entry to a stack is traditionally called: [ D ]

A. add
B. append

C. insert
D. push

25. The operation for removing an entry from a stack is traditionally called: [ C ]

A. delete
B. peek

C. pop
D. remove

26. Which of the following stack operations could result in stack underflow? [ A ]

A. is_empty
B. pop

C. push
D. Two or more of the above answers

27. Which of the following applications may use a stack?

A. A parentheses balancing program.
B. Keeping track of local variables at run time.
C. Syntax analyzer for a compiler.
D. All of the above.

[ D ]

28. Here is an infix expression: 4 + 3 * (6 * 3 - 12). Suppose that we are  

using the usual stack algorithm to convert the expression from infix to  

postfix notation. What is the maximum number of symbols that will  

appear on the stack AT ONE TIME during the conversion of this  

expression?

[ D ]

A. 1
B. 2

C. 3
D. 4

29. What is the value of the postfix expression 6 3 2 4 + - *
A. Something between -15 and -100
B. Something between -5 and -15
C. Something between 5 and -5
D. Something between 5 and 15
E. Something between 15 and 100

[ A ]

30. If the expression ((2 + 3) * 4 + 5 * (6 + 7) * 8) + 9 is evaluated with *

having precedence over +, then the value obtained is same as the value

of which of the following prefix expressions?

[ A ]

A. + + * + 2 3 4 * * 5 + 6 7 8 9
B. + * + + 2 3 4 * * 5 + 6 7 8 9

C. * + + + 2 3 4 * * 5 + 6 7 8 9
D. + * + + 2 3 4 + + 5 * 6 7 8 9

31. Evaluate the following prefix expression:
+ * 2 + / 14 2 5 1

[ B ]

A. 50

B. 25

C. 40

D. 15



32 Parenthesis are never needed prefix or postfix expression: [ A ]

A. True
B. False

C. Cannot be expected
D. None of the above

33 A postfix expression is merely the reverse of the prefix expression: [ B ]

A. True
B. False

C. Cannot be expected
D. None of the above

34 Which among the following data structure may give overflow error, even [ A ]  

though the current number of elements in it, is less than its size:

A. Simple Queue
B. Circular Queue

C. Stack
D. None of the above

35. Which among the following types of expressions does not require  
precedence rules for evaluation:

[ C ]

A. Fully parenthesized infix expression
B. Prefix expression
C. both A and B
D. none of the above

36. Conversion of infix arithmetic expression to postfix expression uses: [ D ]

A. Stack
B. circular queue

C. linked list

D. Queue



Hybrid structures:

If two basic types of structures are mixed then it is a hybrid form. Then one part contiguous

and another part non-contiguous. For example, figure 1.5 shows how to implement a double–

linked list using three parallel arrays, possibly stored a past from each other in memory.

A B C (a) Conceptual Structure

D P N

1

2 (b) Hybrid Implementation

A

B

C

D

3

4

0

1

4

0

1

2

3

4
List Head

Figure 1.5. A double linked list via a hybrid data structure

The array D contains the data for the list, whereas the array P and N hold the previous and next
―pointers‘‘. The pointers are actually nothing more than indexes into the D array. For instance,

D[i] holds the data for node i and p[i] holds the index to the node previous to i, where may or

may not reside at position i–1. Like wise, N[i] holds the index to the next node in the list.

1.6. Abstract Data Type (ADT):

The design of a data structure involves more than just its organization. You also need to plan

for the way the data will be accessed and processed – that is, how the data will be interpreted

actually, non-contiguous structures – including lists, tree and graphs – can be implemented

either contiguously or non- contiguously like wise, the structures that are normally treated as

contiguously - arrays and structures – can also be implemented non-contiguously.

The notion of a data structure in the abstract needs to be treated differently from what ever is

used to implement the structure. The abstract notion of a data structure is defined in terms of

the operations we plan to perform on the data.

Considering both the organization of data and the expected operations on the data, leads to the
notion of an abstract data type. An abstract data type in a theoretical construct that consists of

data as well as the operations to be performed on the data while hiding implementation.

For example, a stack is a typical abstract data type. Items stored in a stack can only be added

and removed in certain order – the last item added is the first item removed. We call these

operations, pushing and popping. In this definition, we haven‘t specified have items are stored

on the stack, or how the items are pushed and popped. We have only specified the valid

operations that can be performed.

For example, if we want to read a file, we wrote the code to read the physical file device. That

is, we may have to write the same code over and over again. So we created what is known



today as an ADT. We wrote the code to read a file and placed it in a library for a programmer to
use.

As another example, the code to read from a keyboard is an ADT. It has a data structure,

character and set of operations that can be used to read that data structure.

To be made useful, an abstract data type (such as stack) has to be implemented and this is

where data structure comes into ply. For instance, we might choose the simple data structure of

an array to represent the stack, and then define the appropriate indexing operations to perform

pushing and popping.

1.9. Selecting a data structure to match the operation:

The most important process in designing a problem involves choosing which data structure to
use. The choice depends greatly on the type of operations you wish to perform.

Suppose we have an application that uses a sequence of objects, where one of the main

operations is delete an object from the middle of the sequence. The code for this is as follows:

void delete (int *seg, int &n, int posn)
// delete the item at position from an array of n elements.
{

if (n)
{

int i=posn;  

n--;

while (i < n)
{

seq[i] =  

seg[i+1]; i++;

}
}
return;

}

This function shifts towards the front all elements that follow the element at position posn. This

shifting involves data movement that, for integer elements, which is too costly. However,

suppose the array stores larger objects, and lots of them. In this case, the overhead for moving
data becomes high. The problem is that, in a contiguous structure, such as an array the logical

ordering (the ordering that we wish to interpret our elements to have) is the same as the

physical ordering (the ordering that the elements actually have in memory).

If we choose non-contiguous representation, however we can separate the logical ordering from

the physical ordering and thus change one without affecting the other. For example, if we store

our collection of elements using a double–linked list (with previous and next pointers), we can

do the deletion without moving the elements, instead, we just modify the pointers in each node.

The code using double linked list is as follows:

void delete (node * beg, int posn)
//delete the item at posn from a list of elements.
{

int i = posn;  

node *q = beg;  
while (i && q)

{



i--;
q = q next;

}

if (q)
{ /* not at end of list, so detach P by making previous and

next nodes point to each other
*/ node *p = q -> prev;  

node *n = q ->

next; if (p)
p -> next = n;

if (n)
n -> prev = P;

}
return;

}

The process of detecting a node from a list is independent of the type of data stored in the  

node, and can be accomplished with some pointer manipulation as illustrated in figure below:

A X C

100 200 300
Initial List

A X A

Figure 1.6 Detaching a node from a list

Since very little data is moved during this process, the deletion using linked lists will often be  
faster than when arrays are used.

It may seem that linked lists are superior to arrays. But is that always true? There are trade

offs. Our linked lists yield faster deletions, but they take up more space because they require

two extra pointers per element.

1.6. Algorithm

An algorithm is a finite sequence of instructions, each of which has a clear meaning and can be

performed with a finite amount of effort in a finite length of time. No matter what the input

values may be, an algorithm terminates after executing a finite number of instructions. In

addition every algorithm must satisfy the following criteria:

Input: there are zero or more quantities, which are externally supplied;

Output: at least one quantity is produced;



Definiteness: each instruction must be clear and unambiguous;

Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out

by a person using only pencil and paper. It is not enough that each operation be definite, but it

must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program. A

program does not necessarily satisfy the fourth condition. One important example of such a

program for a computer is its operating system, which never terminates (except for system

crashes) but continues in a wait loop until more jobs are entered.

We represent an algorithm using pseudo language that is a combination of the constructs of a

programming language together with informal English statements.

1.8. Practical Algorithm design issues:

Choosing an efficient algorithm or data structure is just one part of the design process. Next,
will look at some design issues that are broader in scope. There are three basic design goals
that we should strive for in a program:

2.
3.
4.

Try to save time (Time complexity).  

Try to save space (Space complexity).  

Try to have face.

A program that runs faster is a better program, so saving time is an obvious goal. Like wise, a

program that saves space over a competing program is considered desirable. We want to ―save

face‖by preventing the program from locking up or generating reams of garbled data.

1.8. Performance of a program:

The performance of a program is the amount of computer memory and time needed to run a

program. We use two approaches to determine the performance of a program. One is

analytical, and the other experimental. In performance analysis we use analytical methods,

while in performance measurement we conduct experiments.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a problem is called the

TIME COMPLEXITY of the algorithm. The time complexity of a program is the amount of

computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic time

complexity. It is the asymptotic complexity of an algorithm, which ultimately determines the

size of problems that can be solved by the algorithm.

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to completion. The

space need by a program has the following components:



Instruction space: Instruction space is the space needed to store the compiled version of the  
program instructions.

Data space: Data space is the space needed to store all constant and variable values. Data  

space has two components:

• Space needed by constants and simple variables in program.
• Space needed by dynamically allocated objects such as arrays and class instances.

Environment stack space: The environment stack is used to save information needed to  

resume execution of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends on factors such  
as:

• The compiler used to complete the program into machine code.
• The compiler options in effect at the time of compilation
• The target computer.

1.8. Classification of Algorithms

If ‗n‘ is the number of data items to be processed or degree of polynomial or the size of the file  
to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a few times.
If all the instructions of a program have this property, we say that its running time
is a constant.

Log n When the running time of a program is logarithmic, the program gets slightly slower as n

grows. This running time commonly occurs in programs that solve a big problem by

transforming it into a smaller problem, cutting the size by some constant fraction.,
When n is a million, log n is a doubled whenever n doubles, log n increases by a

constant, but log n does not double until n increases to n2.

n When the running time of a program is linear, it is generally the case that a small
amount of processing is done on each input element. This is the optimal situation
for an algorithm that must process n inputs.

n. log n This running time arises for algorithms but solve a problem by breaking it up into

smaller sub-problems, solving them independently, and then combining the

solutions. When n doubles, the running time more than doubles.

n2
When the running time of an algorithm is quadratic, it is practical for use only on  
relatively small problems. Quadratic running times typically arise in algorithms that  

process all pairs of data items (perhaps in a double nested loop) whenever n  

doubles, the running time increases four fold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a triple–

nested loop) has a cubic running time and is practical for use only on small  

problems. Whenever n doubles, the running time increases eight fold.

2n
Few algorithms with exponential running time are likely to be appropriate for  

practical use, such algorithms arise naturally as ―brute–force‖ solutions to  
problems. Whenever n doubles, the running time squares.



1.11. Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or

storage space requirement of the algorithm in terms of the size ‗n‘ of the input data. Mostly,

the storage space required by an algorithm is simply a multiple of the data size ‗n‘. Complexity

shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‗n‘ of

the input data but also on the particular data. The complexity function f(n) for certain cases

are:

1. Best Case

2. Average Case

3. Worst Case

: The minimum possible value of f(n) is called the best case.

: The expected value of f(n).

: The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as analysis of

algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in the

rate of growth of the time or space required to solve larger and larger instances of a problem.

We will associate with the problem an integer, called the size of the problem, which is a

measure of the quantity of input data.

1.10. Rate of Growth

Big–Oh (O), Big–Omega (Ω), Big–Theta (Θ) and Little–Oh

2. T(n) = O(f(n)), (pronounced order of or big oh), says that the growth rate of T(n) is  
less than or equal (<) that of f(n)

3. T(n) = Ω(g(n)) (pronounced omega), says that the growth rate of T(n) is greater than  

or equal to (>) that of g(n)

4. T(n) = Θ(h(n)) (pronounced theta), says that the growth rate of T(n) equals (=) the  

growth rate of h(n) [if T(n) = O(h(n)) and T(n) = Ω (h(n)]

5. T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than the  
growth rate of p(n) [if T(n) = O(p(n)) and T(n) ≠ Θ (p(n))].

Some Examples:

2n
2 

+ 5n – 6 = O(2
n
)

2n2 + 5n – 6 = O(n3)
2n2 + 5n – 6 = O(n2)

2n2 + 5n – 6 ≠ O(n)

2n
2 

+ 5n – 6 ≠ Ω(2n)

2n2 + 5n – 6 ≠ Ω(n3)

2n2  + 5n – 6 =Ω(n2)

2n
2 

+ 5n – 6 =Ω(n)

2n2 
+ 5n – 6 ≠ Θ(2n)

2n
2 

+ 5n – 6 ≠ Θ(n
3
)

2n2 + 5n – 6 = Θ(n2)

2n2 
+ 5n – 6 ≠ Θ(n)

2n
2 

+ 5n – 6 = o(2
n
)

2n2 + 5n – 6 = o(n3)

2n2 + 5n – 6 ≠ o(n2)

2n2 + 5n – 6 ≠ o(n)



1.11.  Analyzing Algorithms

Suppose ‗M‘ is an algorithm, and suppose ‗n‘ is the size of the input data. Clearly the complexity

f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want to examine.

This is usually done by comparing f(n) with some standard functions. The most common

computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

S.No log n n n. log n n2 n3 2n

1 0 1 1 1 1 2

2 1 2 2 4 8 4

3 2 4 8 16 64 16

4 3 8 24 64 512 256

5 4 16 64 256 4096 65536

Graph of log n, n, n log n, n2, n3, 2n, n! and nn

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the convention

will not have any particular units of time. Thus we throw away leading constants. We will also

throw away low–order terms while computing a Big–Oh running time. Since Big-Oh is an upper

bound, the answer provided is a guarantee that the program will terminate within a certain time

period. The program may stop earlier than this, but never later.



One way to compare the function f(n) with these standard function is to use the functional ‗O‘

notation, suppose f(n) and g(n) are functions defined on the positive integers with the property

that f(n) is bounded by some multiple g(n) for almost all ‗n‘. Then,

f(n) = O(g(n))

Which is read as ―f(n) is of order g(n)‖. For example, the order of complexity for:

• Linear search is O(n)
• Binary search is O(log n)
• Bubble sort is O(n2)
• Quick sort is O(n log n)

For example, if the first program takes 100n2 milliseconds. While the second taken 5n3  

milliseconds. Then might not 5n3 program better than 100n2 program?

As the programs can be evaluated by comparing their running time functions, with constants by  

proportionality neglected. So, 5n3 program be better than the 100n2 program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster those the one with running  

time 100 n2.

Therefore, if the program is to be run mainly on inputs of small size, we would indeed prefer  the 

program whose running time was O(n3)

However, as ‗n‘ gets large, the ratio of the running times, which is n/20, gets arbitrarily larger.  

Thus, as the size of the input increases, the O(n3) program will take significantly more time

than the O(n2) program. So it is always better to prefer a program whose running time with the  
lower growth rate. The low growth rate function‘s such as O(n) or O(n log n) are always better.

Exercises

2. Define algorithm.

3. State the various steps in developing algorithms?

4. State the properties of algorithms.

5. Define efficiency of an algorithm?

6. State the various methods to estimate the efficiency of an algorithm.

7. Define time complexity of an algorithm?

8. Define worst case of an algorithm.

9. Define average case of an algorithm.

10. Define best case of an algorithm.

11. Mention the various spaces utilized by a program.



13. Define space complexity of an algorithm.

14. State the different memory spaces occupied by an algorithm.

Multiple Choice Questions

1. is a step-by-step recipe for solving an instance of problem. [ A ]

A. Algorithm
C. Pseudocode

B. Complexity
D. Analysis

2. is used to describe the algorithm, in less formal language. [ C ]

A. Cannot be defined
C. Pseudocode

B. Natural Language
D. None

3. of an algorithm is the amount of time (or the number of steps)  

needed by a program to complete its task.
[ D ]

A. Space Complexity
C. Divide and Conquer

B. Dynamic Programming
D. Time Complexity

4. of a program is the amount of memory used at once by the  

algorithm until it completes its execution.
[ C ]

A. Divide and Conquer
C. Space Complexity

B. Time Complexity
D. Dynamic Programming

5. is used to define the worst-case running time of an algorithm. [ A ]

A. Big-Oh notation
C. Complexity

B. Cannot be defined
D. Analysis



Chapter

4
LINKED LISTS

In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues
etc.). The basic linked list can be used without modification in many programs.
However, some applications require enhancements to the linked list design.
These enhancements fall into three broad categories and yield variations on
linked lists that can be used in any combination: circular linked lists, double
linked lists and lists with header nodes.

Linked lists and arrays are similar since they both store collections of data. Array is the

most common data structure used to store collections of elements. Arrays are

convenient to declare and provide the easy syntax to access any element by its index

number. Once the array is set up, access to any element is convenient and fast. The

disadvantages of arrays are:

 The size of the array is fixed. Most often this size is specified at compile
time. This makes the programmers to allocate arrays, which seems "large
enough" than required.

 Inserting new elements at the front is potentially expensive because existing
elements need to be shifted over to make room.

 Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong

where arrays are weak. Generally array's allocates the memory for all its elements in

one block whereas linked lists use an entirely different strategy. Linked lists allocate

memory for each element separately and only when necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code  
will depend on the following functions:

malloc() is a system function which allocates a block of memory in the "heap" and

returns a pointer to the new block. The prototype of malloc() and other heap functions

are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by:

void *malloc (number_of_bytes)

Since a void * is returned the C standard states that this pointer can be converted to  

any type. For example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the  

sizeof() function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));



free() is the opposite of malloc(), which de-allocates memory. The argument to free()

is a pointer to a block of memory in the heap — a pointer which was obtained by a

malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a

block.

Linked List Concepts:

A linked list is a non-sequential collection of data items. It is a dynamic data structure.
For every data item in a linked list, there is an associated pointer that would give the
memory location of the next data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be

anywhere, but the accessing of these data items is easier as each data item contains

the address of the next data item.

Advantages of linked lists:

Linked lists have many advantages. Some of the very important advantages are:

7. Linked lists are dynamic data structures. i.e., they can grow or shrink during
the execution of a program.

8. Linked lists have efficient memory utilization. Here, memory is not pre-
allocated. Memory is allocated whenever it is required and it is de-allocated
(removed) when it is no longer needed.

9. Insertion and Deletions are easier and efficient. Linked lists provide flexibility
in inserting a data item at a specified position and deletion of the data item
from the given position.

10. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

It consumes more space because every node requires a additional pointer to  

store address of the next node.

Searching a particular element in list is difficult and also time consuming.

Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential  
manner. Hence, it is also called as linear linked list.



ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of  
elements during declaration (i.e., during  
compile time).

It is not necessary to specify the  
number of elements during declaration  
(i.e., memory is allocated during run
time).

It occupies less memory than a linked  
list for the same number of elements.

It occupies more memory.

Inserting new elements at the front is  
potentially expensive because existing
elements need to be shifted over to
make room.

Inserting a new element at any position  
can be carried out easily.

Deleting an element from an array is  
not possible.

Deleting an element is possible.

A double linked list is one in which all nodes are linked together by multiple links which

helps in accessing both the successor node (next node) and predecessor node (previous

node) from any arbitrary node within the list. Therefore each node in a double linked

list has two link fields (pointers) to point to the left node (previous) and the right node

(next). This helps to traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can

be made a circular linked list by simply storing address of the very first node in the link

field of the last node.

A circular double linked list is one, which has both the successor pointer and

predecessor pointer in the circular manner.

Comparison between array and linked list:

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS

Sequential access efficient efficient

Random access efficient inefficient

Resigning inefficient efficient

Element rearranging inefficient efficient

Overhead per elements none 1 or 2 links



Applications of linked list:

1. Linked lists are used to represent and manipulate polynomial. Polynomials are

expression containing terms with non zero coefficient and exponents. For

example:

P(x) = a0 X
n + a1 X

n-1 + …… + an-1 X + an

2. Represent very large numbers and operations of the large number such  
as addition, multiplication and division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction

Single Linked List:

A linked list allocates space for each element separately in its own block of memory

called a "node". The list gets an overall structure by using pointers to connect all its

nodes together like the links in a chain. Each node contains two fields; a "data" field to

store whatever element, and a "next" field which is a pointer used to link to the next

node. Each node is allocated in the heap using malloc(), so the node memory continues

to exist until it is explicitly de-allocated using free(). The front of the list is a pointer to

the ―start‖ node.

A single linked list is shown in figure 3.2.1.

STACK HEAP

100

start
10 200 20 300

100 200

Each node stores
the data.

Stores the next
node address.

The start  
pointer holds  
the address  
of the first  
node of  
the list.

30 400 40 X

300 400

The next field of the  

last node is NULL.

Figure 3.2.1. Single Linked List

The beginning of the linked list is stored in a "start" pointer which points to the first

node. The first node contains a pointer to the second node. The second node contains a

pointer to the third node, ... and so on. The last node in the list has its next field set to

NULL to mark the end of the list. Code can access any node in the list by starting at the

start and following the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the

left top to show that it is in the stack. The list nodes are drawn on the right to show

that they are allocated in the heap.



node* getnode()

{
node* newnode;
newnode = (node *) malloc(sizeof(node));  

printf("\n Enter data: ");

scanf("%d", &newnode -> data);

newnode -> next = NULL; return

newnode;

}

newnode

10 X

100

Implementation of Single Linked List:

Before writing the code to build the above list, we need to create a start node, used to

create and access other nodes in the linked list. The following structure definition will

do (see figure 3.2.2):

 Creating a structure with one data item and a next pointer, which will be  

pointing to next node of the list. This is called as self-referential structure.

 Initialise the start pointer to be NULL.

struct slinklist

{
int data;

struct slinklist* next;

};

typedef struct slinklist node;  

node *start = NULL;

node: data next

start

Empty list: NULL

Figure 3.2.2. Structure definition, single link node and empty list

The basic operations in a single linked list are:

5.

6.

7.

8.

Creation.  

Insertion.  

Deletion.  

Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be

allocated for creating a node. The information is stored in the memory, allocated by

using the malloc() function. The function getnode(), is used for creating a node, after

allocating memory for the structure of type node, the information for the item (i.e.,

data) has to be read from the user, set next field to NULL and finally returns the

address of the node. Figure 3.2.3 illustrates the creation of a node for single linked list.

Figure 3.2.3. new node with a value of 10



Creating a Singly Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‗n‘ number of nodes:

• Get the new node using getnode().  
newnode = getnode();

• If the list is empty, assign new node as start.  

start = newnode;

• If the list is not empty, follow the steps given below:

• The next field of the new node is made to point the first node (i.e.  

start node) in the list by assigning the address of the first node.

• The start pointer is made to point the new node by assigning the  

address of the new node.

• Repeat the above steps ‗n‘ times.

Figure 3.2.4 shows 4 items in a single linked list stored at different locations in  
memory.

start

100

10 200

100

20 300

200

30 400

300

40 X

400

Figure 3.2.4. Single Linked List with 4 nodes

The function createlist(), is used to create ‗n‘  number of nodes:

vo id createlist(int n)
{

int i;
no de * new no  

de; no de *tem p;
for(i = 0; i < n ; i+ +)
{

new no de = getno de();  
if(start = = NULL)

{

start = new no de;
}
else
{

tem p = start;
w hile(tem p - > next != NULL)  

tem p = tem p - > next;

tem p - > next = new no de;

}
}

}



Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the

insertion of a node. Memory is to be allocated for the new node (in a similar way that is

done while creating a list) before reading the data. The new node will contain empty

data field and empty next field. The data field of the new node is then stored with the

information read from the user. The next field of the new node is assigned to NULL. The

new node can then be inserted at three different places namely:

#

#

#

Inserting a node at the beginning.  

Inserting a node at the end.

Inserting a node at intermediate position.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using 

getnode().  newnode =

getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given 

below:  newnode -> next = start;

start = newnode;

Figure 3.2.5 shows inserting a node into the single linked list at the beginning.

start

500

10 200

100

20 300

200

30 400

300

40 X

400

1005

500

Figure 3.2.5. Inserting a node at the beginning

The function insert_at_beg(), is used for inserting a node at the beginning

void insert_at_beg()
{

node *newnode;  

newnode = getnode();

if(start == NULL)

{
start = newnode;

}
else
{

newnode -> next =  
start; start = newnode;

}
}



Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

# Get the new node using getnode()  

newnode = getnode();

# If the list is empty then start = newnode.

# If the list is not empty follow the steps given below:  
temp = start;
while(temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;

Figure 3.2.6 shows inserting a node into the single linked list at the end.

start

100

10 200

100

20 300

200

30 400

300

40 500

400

50 X

500

Figure 3.2.6. Inserting a node at the end.

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()
{

node *newnode, *temp;
newnode = getnode();  

if(start == NULL)

{
start = newnode;

}
else
{

temp = start;
while(temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;
}

}

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the  

list:

• Get the new node using getnode().  

newnode = getnode();



 Ensure that the specified position is in between first node and last node. If

not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

 After reaching the specified position, follow the steps given 

below:  prev -> next = newnode;

newnode -> next = temp;

12 Let the intermediate position be 3.

Figure 3.2.7 shows inserting a node into the single linked list at a specified intermediate  

position other than beginning and end.

start prev temp

100

10 200 30 400 40 X

100

20 500

200 300 400

50 300

500 new node

Figure 3.2.7. Inserting a node at an intermediate position.

The function insert_at_mid(), is used for inserting a node in the intermediate position.

void insert_at_mid()
{

node *newnode, *temp, *prev;  
int pos, nodectr, ctr = 1;  
newnode = getnode();  
printf("\n Enter the position: ");  
scanf("%d", &pos);
nodectr = countnode(start);  

if(pos > 1 && pos < nodectr)

{
temp = prev = start;  
while(ctr < pos)

{
prev = temp;
temp = temp ->  
next; ctr++;

}
prev -> next = newnode;  
newnode -> next = temp;

}
else
{

printf("position %d is not a middle position", pos);
}

}



Deletion of a node:

Another primitive operation that can be done in a singly linked list is the deletion of a
node. Memory is to be released for the node to be deleted. A node can be deleted from
the list from three different places namely.

 Deleting a node at the beginning.

 Deleting a node at the end.

 Deleting a node at intermediate position.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‗Empty List‘ message.

 If the list is not empty, follow the steps given 
below:  temp = start;
start = start -> next;  

free(temp);

Figure 3.2.8 shows deleting a node at the beginning of a single linked list.

start

200

X
10 200 20 300 30 400 40

temp
100 200 300 400

Figure 3.2.8. Deleting a node at the beginning.

The function delete_at_beg(), is used for deleting the first node in the list.

void delete_at_beg()
{

node *temp;  

if(start == NULL)

{
printf("\n No nodes are exist..");  
return ;

}
else
{

temp = start;
start = temp -> next;

free(temp);
printf("\n Node deleted ");

}
}



Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display ‗Empty List‘ message.

2. If the list is not empty, follow the steps given 

below:  temp = prev = start;

while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;  
free(temp);

Figure 3.2.9 shows deleting a node at the end of a single linked list.

start

100

free(temp);
printf("\n Node deleted ");

}
}

10 200

100

20 300

200

30 X

300

40 X

400

Figure 3.2.9. Deleting a node at the end.

The function delete_at_last(), is used for deleting the last node in the list.

void delete_at_last()
{

node *temp, *prev;  
if(start == NULL)

{
printf("\n Empty  
List.."); return ;

}
else
{

temp = start;

prev = start;

while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;



Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the  

list (List must contain more than two node).

# If list is empty then display ‗Empty List‘ message

# If the list is not empty, follow the steps given below.  
if(pos > 1 && pos < nodectr)
{

temp = prev = start;  

ctr = 1;

while(ctr < pos)
{

prev = temp;
temp = temp -> next;  

ctr++;

}
prev -> next = temp -> next;  

free(temp);

printf("\n node deleted..");
}

Figure 3.2.10 shows deleting a node at a specified intermediate position other than  

beginning and end from a single linked list.

start

100

10 300

100

20 300

200

30 400
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Figure 3.2.10. Deleting a node at an intermediate position.

The function delete_at_mid(), is used for deleting the intermediate node in the list.

void delete_at_mid()
{

int ctr = 1, pos,  
nodectr; node *temp,

*prev; if(start == NULL)
{

printf("\n Empty  
List.."); return ;

}
else
{

printf("\n Enter position of node to delete: ");  
scanf("%d", &pos);
nodectr = countnode(start);  
if(pos > nodectr)

{
printf("\nThis node doesnot exist");

}



if(pos > 1 && pos < nodectr)
{

temp = prev = start;  
while(ctr < pos)

{
prev = temp;  
temp = temp ->  
next; ctr ++;

}
prev -> next = temp -> next;  
free(temp);

printf("\n Node deleted..");
}
else
{

printf("\n Invalid position..");  
getch();

}

}
}

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse (move) a linked list, node by node
from the first node, until the end of the list is reached. Traversing a list involves the
following steps:

2. Assign the address of start pointer to a temp pointer.

3. Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in

the list from left to right.

void traverse()

{

node *temp;

temp = start;

printf("\n The contents of List (Left to Right):
\n"); if(start == NULL )

printf("\n Empty List");
else

{
while (temp != NULL)

{
printf("%d ->", temp ->  

data); temp = temp -> next;

}

}
printf("X");

}

Alternatively there is another way to traverse and display the information. That is in

reverse order. The function rev_traverse(), is used for traversing and displaying the

information stored in the list from right to left.



vo id rev_traverse(no de *st)
{

if(st = = NULL)
{

return;
}
else
{

rev_traverse(st - > next);  
printf("%d - >", st - > data);

}

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

int co untno de(no de *st)
{

if(st = = NULL)

return 0;
else

return(1 + co untno de(st - > next));
}

Source Code for the Implementation of Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct slinklist
{

int data;
struct slinklist *next;

};

typedef struct slinklist node;  

node *start = NULL;

int menu()
{

int ch;  
clrscr();
printf("\n 1.Create a list ");
printf("\n--------------------------");
printf("\n 2.Insert a node at beginning ");  
printf("\n 3.Insert a node at end");  
printf("\n 4.Insert a node at middle");  
printf("\n ");  
printf("\n 5.Delete a node from beginning");  
printf("\n 6.Delete a node from Last");  
printf("\n 7.Delete a node from Middle");  
printf("\n ");

printf("\n 8.Traverse the list (Left to Right)");  
printf("\n 9.Traverse the list (Right to Left)");



printf("\n ");  

printf("\n 10. Count nodes ");  
printf("\n 11. Exit ");

printf("\n\n Enter your choice: ");  
scanf("%d",&ch);
return ch;

}

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));  

printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> next = NULL; return
newnode;

}

int countnode(node *ptr)
{

int count=0;  

while(ptr != NULL)

{
count++;
ptr = ptr -> next;

}
return (count);

}

void createlist(int n)
{

int i;
node *newnode;  
node *temp;

for(i = 0; i < n; i++)
{

newnode = getnode();  

if(start == NULL)

{
start = newnode;

}
else
{

temp = start;
while(temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;
}

}
}

void traverse()
{

node *temp;

temp = start;

printf("\n The contents of List (Left to Right): \n");  
if(start == NULL)

{
printf("\n Empty List");  
return;

}
else
{



while(temp != NULL)
{

printf("%d-->", temp ->  
data); temp = temp -> next;

}
}
printf(" X ");

}

void rev_traverse(node *start)
{

if(start == NULL)
{

return;
}
else
{

rev_traverse(start -> next);  

printf("%d -->", start -> data);

}
}

void insert_at_beg()
{

node *newnode;  

newnode = getnode();  

if(start == NULL)

{
start = newnode;

}
else
{

newnode -> next =  
start; start = newnode;

}
}

void insert_at_end()
{

node *newnode, *temp;
newnode = getnode();  

if(start == NULL)

{
start = newnode;

}
else
{

temp = start;
while(temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;
}

}

void insert_at_mid()
{

node *newnode, *temp, *prev;  
int pos, nodectr, ctr = 1;  
newnode = getnode();  
printf("\n Enter the position: ");  
scanf("%d", &pos);

nodectr = countnode(start);



if(pos > 1 && pos < nodectr)
{

temp = prev = start;  
while(ctr < pos)

{
prev = temp;  
temp = temp ->  
next; ctr++;

}
prev -> next = newnode;  
newnode -> next = temp;

}
else

printf("position %d is not a middle position", pos);
}

void delete_at_beg()
{

node *temp;  

if(start == NULL)

{
printf("\n No nodes are exist..");  
return ;

}
else
{

temp = start;
start = temp -> next;  
free(temp);

printf("\n Node deleted ");
}

}

void delete_at_last()
{

node *temp, *prev;  

if(start == NULL)

{
printf("\n Empty  
List.."); return ;

}
else
{

temp = start;

prev = start;

while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;  
free(temp);
printf("\n Node deleted ");

}
}

void delete_at_mid()
{

int ctr = 1, pos,  
nodectr; node *temp,

*prev; if(start == NULL)
{

printf("\n Empty List..");



return ;
}
else
{

printf("\n Enter position of node to delete: ");  
scanf("%d", &pos);
nodectr = countnode(start);  
if(pos > nodectr)

{
printf("\nThis node doesnot exist");

}
if(pos > 1 && pos < nodectr)
{

temp = prev = start;  
while(ctr < pos)
{

prev = temp;  
temp = temp ->  
next; ctr ++;

}
prev -> next = temp -> next;  
free(temp);

printf("\n Node deleted..");
}
else
{

printf("\n Invalid position..");  
getch();

}
}

}

void main(void)
{

int ch, n;  
clrscr();  
while(1)

{
ch = menu();  
switch(ch)

{
case 1:

if(start == NULL)
{

printf("\n Number of nodes you want to create: ");  
scanf("%d", &n);

createlist(n);
printf("\n List created..");

}
else

printf("\n List is already created..");  

break;

case 2:
insert_at_beg();  
break;

case 3:
insert_at_end();  
break;

case 4:
insert_at_mid();

break;



case 5:
delete_at_beg();  
break;

case 6:
delete_at_last();  
break;

case 7:
delete_at_mid();  

break;

case 8:
traverse();  
break;

case 9:
printf("\n The contents of List (Right to Left): \n");  
rev_traverse(start);
printf(" X ");  
break;

case 10:
printf("\n No of nodes : %d ", countnode(start));  
break;

case 11 :
exit(0);

}
getch();

}
}

Using a header node:

A header node is a special dummy node found at the front of the list. The use of header

node is an alternative to remove the first node in a list. For example, the picture below

shows how the list with data 10, 20 and 30 would be represented using a linked list

without and with a header node:

sta rt

100

10 200 20 300 30 X

100 200 300

Single Linke d List w it ho ut a he a der no de

sta rt

400

100 200 300

400

10

100

20

200

30 X

300

Single Linke d List w it h he a der no de

Note that if your linked lists do include a header node, there is no need for the special

case code given above for the remove operation; node n can never be the first node in

the list, so there is no need to check for that case. Similarly, having a header node can

simplify the code that adds a node before a given node n.
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A double linked list is shown in figure 3.3.1.

STACK

100

start

The start  

pointer holds  

the address  

of the first  

node of the  

list.

HEAP
Stores the previous  
node address.

X 10 200 100 20 300 200 30 X

100 200 300

Stores the data. Stores the next  
node address.

The right field of the  
last node is NULL.

Figure 3.3.1. Double Linked List

The beginning of the double linked list is stored in a "start" pointer which points to the  

first node. The first node‘s left link and last node‘s right link is set to NULL.

The following code gives the structure definition:

struct dlinklist

{
struct dlinklist *left;  

int data;

struct dlinklist *right;

};

typedef struct dlinklist node;  

node *start = NULL;

node: left data right

start

Empty list: NULL

Figure 3.4.1. Structure definition, double link node and empty list

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be

allocated for creating a node. The information is stored in the memory, allocated by

using the malloc() function. The function getnode(), is used for creating a node, after

allocating memory for the structure of type node, the information for the item (i.e.,

data) has to be read from the user and set left field to NULL and right field also set to

NULL (see figure 3.2.2).

node* getnode()

{
node* newnode;
newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: ");  

scanf("%d", &newnode -> data);  

newnode -> left = NULL;  

newnode -> right = NULL;  

return newnode;

}

newnode

X 10 X

100

Figure 3.4.2. new node with a value of 10



Creating a Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‗n‘ number of nodes:

• Get the new node using getnode().

newnode =getnode();

• If the list is empty then start = newnode.

• If the list is not empty, follow the steps given below:

• The left field of the new node is made to point the previous node.

• The previous nodes right field must be assigned with address of the  

new node.

• Repeat the above steps ‗n‘ times.

The function createlist(), is used to create ‗n‘ number of nodes:

vo id createlist(int n)
{

int i;
no de * new no  
de; no de *tem p;

for(i = 0; i < n; i+ +)

{
new no de = getno de();  
if(start = = NULL)

{

start = new no de;
}
else
{

tem p = start;
w hile(tem p - > right)

tem p = tem p - > right;  
tem p - > right = new no de; new  
no de - > left = tem p;

}
}

}

Figure 3.4.3 shows 3 items in a double linked list stored at different locations.

start

100

300X 10 200

100

100 20

200

200 30 X

300

Figure 3.4.3. Double Linked List with 3 nodes



Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

# Get the new node using getnode().

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:  

newnode -> right = start;

start -> left = newnode;
start = newnode;

The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure
3.4.4 shows inserting a node into the double linked list at the beginning.

start

400

20 300400 10 200

100

100

200

200 30 X

300

40 100X

400

Figure 3.4.4. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using 

getnode()  newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given 

below:  temp = start;

while(temp -> right != NULL)  

temp = temp -> right;

temp -> right = newnode;  

newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5  

shows inserting a node into the double linked list at the end.



start

100

300X 10 200
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200
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300 40 X
400

Figure 3.4.5. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the  

list:

 Get the new node using getnode().

newnode=getnode();

# Ensure that the specified position is in between first node and last node. If  

not, specified position is invalid. This is done by countnode() function.

# Store the starting address (which is in start pointer) in temp and prev

pointers. Then traverse the temp pointer upto the specified position followed

by prev pointer.

# After reaching the specified position, follow the steps given below:

newnode -> left = temp; newnode
-> right = temp -> right; temp ->  

right -> left = newnode; temp ->  

right = newnode;

The function dbl_insert_mid(), is used for inserting a node in the intermediate position.

Figure 3.4.6 shows inserting a node into the double linked list at a specified

intermediate position other than beginning and end.

start
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X
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Figure 3.4.6. Inserting a node at an intermediate position
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Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‗Empty List‘ message.

 If the list is not empty, follow the steps given below:  

temp = start;

start = start -> right;
start -> left = NULL;
free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure
3.4.6 shows deleting a node at the beginning of a double linked list.

start

200

X

100

Figure 3.4.6. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
 If list is empty then display ‗Empty List‘ message

 If the list is not empty, follow the steps given below:  

temp = start;

while(temp -> right != NULL)
{

temp = temp -> right;
}
temp -> left -> right = NULL;  
free(temp);

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7  

shows deleting a node at the end of a double linked list.

start

100

X X X10 200 100 20 20030
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Figure 3.4.7. Deleting a node at the end



Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the  

list (List must contain more than two nodes).

5 If list is empty then display ‗Empty List‘ message.

6 If the list is not empty, follow the steps given below:

40 Get the position of the node to delete.

41 Ensure that the specified position is in between first node and last  

node. If not, specified position is invalid.

42 Then perform the following 

steps:  if(pos > 1 && pos <

nodectr)

{
temp = start;  

i = 1;

while(i < pos)
{

temp = temp -> right;  
i++;

}
temp -> right -> left = temp -> left;  

temp -> left -> right = temp -> right;  

free(temp);

printf("\n node deleted..");
}

The function delete_at_mid(), is used for deleting the intermediate node in the list.

Figure 3.4.8 shows deleting a node at a specified intermediate position other than

beginning and end from a double linked list.
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Figure 3.4.8 Deleting a node at an intermediate position

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from the first

node, until the end of the list is reached. The function traverse_left_right() is used for

traversing and displaying the information stored in the list from left to right.

The following steps are followed, to traverse a list from left to right:

5. If list is empty then display ‗Empty List‘ message.

6. If the list is not empty, follow the steps given below:



temp = start;  

while(temp != NULL)

{
print temp -> data;  

temp = temp -> right;

}

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by node

from the first node, until the end of the list is reached. The function

traverse_right_left() is used for traversing and displaying the information stored in the

list from right to left. The following steps are followed, to traverse a list from right to

left:

6. If list is empty then display ‗Empty List‘ message.

7. If the list is not empty, follow the steps given 

below:  temp = start;

while(temp -> right != NULL)  

temp = temp -> right;

while(temp != NULL)
{

print temp -> data;  

temp = temp -> left;

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

int co untno de(no de *start)
{

if(start = = NULL)
return 0;

else
return(1 + co untno de(start - >right ));

}

A Complete Source Code for the Implementation of Double Linked List:

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct dlinklist
{

struct dlinklist *left;  
int data;
struct dlinklist *right;

};

typedef struct dlinklist node;  
node *start = NULL;



node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));  

printf("\n Enter data: ");

scanf("%d", &newnode -> data);  
newnode -> left = NULL;  
newnode -> right = NULL;  
return newnode;

}

int countnode(node *start)
{

if(start == NULL)

return 0;

else
return 1 + countnode(start -> right);

}

int menu()
{

int ch;  
clrscr();

printf("\n 1.Create");
printf("\n ");
printf("\n 2. Insert a node at beginning ");  
printf("\n 3. Insert a node at end");  
printf("\n 4. Insert a node at middle");  
printf("\n ");
printf("\n 5. Delete a node from beginning");  
printf("\n 6. Delete a node from Last");  
printf("\n 7. Delete a node from Middle");  
printf("\n ");
printf("\n 8. Traverse the list from Left to Right
"); printf("\n 9. Traverse the list from Right to
Left "); printf("\n ");

printf("\n 10.Count the Number of nodes in the list");  
printf("\n 11.Exit ");
printf("\n\n Enter your choice: ");  
scanf("%d", &ch);

return ch;
}

void createlist(int n)
{

int i;
node *newnode;  
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();

if(start == NULL)

start = newnode;
else
{

temp = start;  
while(temp -> right)

temp = temp -> right;  
temp -> right = newnode;  
newnode -> left = temp;

}

}

}



}

}

void traverse_left_to_right()
{

node *temp;  

temp = start;

printf("\n The contents of List:  
"); if(start == NULL )

printf("\n Empty List");
else
{

while(temp != NULL)
{

printf("\t %d ", temp -> data);  
temp = temp -> right;

}
}

}
void traverse_right_to_left()
{

node *temp;

temp = start;

printf("\n The contents of List:  
"); if(start == NULL)

printf("\n Empty List");
else
{

while(temp -> right != NULL)  
temp = temp -> right;

}
while(temp != NULL)
{

printf("\t%d", temp ->  
data); temp = temp -> left;

}
}
void dll_insert_beg()
{

node *newnode;  

newnode = getnode();  

if(start == NULL)

start = newnode;
else
{

newnode -> right = start;  
start -> left = newnode;  
start = newnode;

}
}

void dll_insert_end()
{

node *newnode, *temp;
newnode = getnode();  

if(start == NULL)

start = newnode;
else
{

temp = start;
while(temp -> right != NULL)  

temp = temp -> right;
temp -> right = newnode;  
newnode -> left = temp;



void dll_insert_mid()
{

node *newnode,*temp;  
int pos, nodectr, ctr = 1;  
newnode = getnode();

printf("\n Enter the position: ");  
scanf("%d", &pos);
nodectr = countnode(start);  
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");  
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;  

while(ctr < pos - 1)

{
temp = temp -> right;  

ctr++;
}

newnode -> left = temp; newnode
-> right = temp -> right; temp ->  

right -> left = newnode; temp ->  
right = newnode;

}

else
printf("position %d of list is not a middle position ", pos);

}

void dll_delete_beg()
{

node *temp;

if(start == NULL)

{
printf("\n Empty  
list"); getch();  
return ;

}
else
{

temp = start;
start = start -> right;
start -> left = NULL;
free(temp);

}
}

void dll_delete_last()
{

node *temp;  

if(start == NULL)

{
printf("\n Empty  
list"); getch();  
return ;

}
else
{

temp = start;
while(temp -> right != NULL)



temp = temp -> right;
temp -> left -> right = NULL;
free(temp);

temp = NULL;
}

}

void dll_delete_mid()
{

int i = 0, pos, nodectr;  
node *temp;
if(start == NULL)
{

printf("\n Empty List");  
getch();

return;
}
else
{

printf("\n Enter the position of the node to delete: ");  
scanf("%d", &pos);
nodectr = countnode(start);  
if(pos > nodectr)

{
printf("\nthis node does not  
exist"); getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp =  
start; i = 1;

while(i < pos)
{

temp = temp -> right;  
i++;

}
temp -> right -> left = temp -> left;  
temp -> left -> right = temp -> right;  
free(temp);

printf("\n node deleted..");
}
else
{

printf("\n It is not a middle position..");  
getch();

}
}

}

void main(void)
{

int ch, n;  
clrscr();  
while(1)

{
ch = menu();  
switch( ch)
{

case 1 :
printf("\n Enter Number of nodes to create: ");  
scanf("%d", &n);
createlist(n);



printf("\n List  
created.."); break;

case 2 :
dll_insert_beg();  
break;

case 3 :
dll_insert_end();  
break;

case 4 :
dll_insert_mid();  
break;

case 5 :
dll_delete_beg();  

break;

case 6 : dll_delete_last();

break;

case 7 :
dll_delete_mid();  
break;

case 8 :
traverse_left_to_right();  
break;

case 9 :
traverse_right_to_left();  
break;

case 10 :
printf("\n Number of nodes: %d", countnode(start));  
break;

case 11:
exit(0);

}
getch();

}
}

Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the

address of the first node. A circular linked list has no beginning and no end. It is

necessary to establish a special pointer called start pointer always pointing to the first

node of the list. Circular linked lists are frequently used instead of ordinary linked list

because many operations are much easier to implement. In circular linked list no null

pointers are used, hence all pointers contain valid address.

A circular single linked list is shown in figure 3.6.1.
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Figure 3.6.1. Circular Single Linked List



The basic operations in a circular single linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‗n‘ number of nodes:

10. Get the new node using 

getnode().  newnode =

getnode();

11. If the list is empty, assign new node as 

start.  start = newnode;

12. If the list is not empty, follow the steps given 

below:  temp = start;

while(temp -> next != NULL)
temp = temp -> next;  

temp -> next = newnode;• Repeat the above steps ‗n‘ times.

• newnode -> next = start;

The function createlist(), is used to create ‗n‘ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the  

circular list:

• Get the new node using 

getnode().  newnode =

getnode();
• If the list is empty, assign new node as start.

start = newnode; newnode

-> next = start;

• If the list is not empty, follow the steps given below:

last = start;
while(last -> next != start)  

last = last -> next;

newnode -> next =  

start; start = newnode;  

last -> next = start;



The function cll_insert_beg(), is used for inserting a node at the beginning. Figure 3.6.2  

shows inserting a node into the circular single linked list at the beginning.
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Figure 3.6.2. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

• Get the new node using 

getnode().  newnode =

getnode();• If the list is empty, assign new node as start.

start = newnode; newnode

-> next = start;

• If the list is not empty follow the steps given below:

temp = start;
while(temp -> next != start)  

temp = temp -> next;

temp -> next = newnode;  
newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Figure 3.6.3 shows inserting a node into the circular single linked list at the end.
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Figure 3.6.3 Inserting a node at the end.



Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

1. If the list is empty, display a message ‗Empty List‘.

2. If the list is not empty, follow the steps given 

below:  last = temp = start;

while(last -> next != start)
last = last -> next;  

start = start -> next;

last -> next = start;

4.8.2. After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4  
shows deleting a node at the beginning of a circular single linked list.
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Figure 3.6.4. Deleting a node at beginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

# If the list is empty, display a message ‗Empty List‘.

# If the list is not empty, follow the steps given below:

temp = start;  

prev = start;

while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}
prev -> next = start;

4.9. After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.



Figure 3.6.5 shows deleting a node at the end of a circular single linked list.
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Figure 3.6.5. Deleting a node at the end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given 

below:  temp = start;

do
{

printf("%d ", temp -> data);  
temp = temp -> next;

} while(temp != start);

• Source Code for Circular Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct cslinklist
{

int data;
struct cslinklist *next;

};

typedef struct cslinklist node;  

node *start = NULL;

int nodectr;  

node* getnode()

{
node * newnode;
newnode = (node *) malloc(sizeof(node));  

printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> next = NULL; return
newnode;

}



int menu()
{

int ch;  
clrscr();

printf("\n 1. Create a list ");  
printf("\n\n--------------------------");

printf("\n 2. Insert a node at beginning ");  

printf("\n 3. Insert a node at end");  
printf("\n 4. Insert a node at middle");

printf("\n\n ");  

printf("\n 5. Delete a node from beginning");  
printf("\n 6. Delete a node from Last");

printf("\n 7. Delete a node from Middle");  

printf("\n\n ");  
printf("\n 8. Display the list");

printf("\n 9. Exit");
printf("\n\n ");  
printf("\n Enter your choice: ");
scanf("%d", &ch);  
return ch;

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;  
nodectr = n;

for(i = 0; i < n ; i++)
{

newnode = getnode();  
if(start == NULL)

{
start = newnode;

}
else
{

temp = start;
while(temp -> next != NULL)  

temp = temp -> next;

temp -> next = newnode;
}

}
newnode ->next = start; /* last node is pointing to starting node */

}

void display()
{

node *temp;  

temp = start;

printf("\n The contents of List (Left to Right): ");  
if(start == NULL )

printf("\n Empty List");
else
{

do
{

printf("\t %d ", temp -> data);  
temp = temp -> next;

} while(temp !=  
start); printf(" X ");

}
}



void cll_insert_beg()
{

node *newnode, *last;
newnode = getnode();
if(start == NULL)

{
start = newnode; newnode

-> next = start;

}
else
{

last = start;
while(last -> next != start)  

last = last -> next;
newnode -> next =  
start; start = newnode;  
last -> next = start;

}
printf("\n Node inserted at beginning..");  

nodectr++;
}

void cll_insert_end()
{

node *newnode, *temp;
newnode = getnode();  

if(start == NULL )

{
start = newnode; newnode

-> next = start;

}
else
{

temp = start;
while(temp -> next != start)  

temp = temp -> next;

temp -> next = newnode;  
newnode -> next = start;

}
printf("\n Node inserted at end..");  
nodectr++;

}

void cll_insert_mid()
{

node *newnode, *temp, *prev;  
int i, pos ;
newnode = getnode(); printf("\n  
Enter the position: ");  
scanf("%d", &pos);

if(pos > 1 && pos < nodectr)
{

temp =
start; prev =  
temp; i = 1;  

while(i < pos)

{
prev = temp;  
temp = temp ->  
next; i++;

}
prev -> next = newnode;  
newnode -> next = temp;



nodectr++;
printf("\n Node inserted at middle..");

}
else
{

printf("position %d of list is not a middle position ", pos);
}

}

void cll_delete_beg()
{

node *temp, *last;  
if(start == NULL)
{

printf("\n No nodes  
exist.."); getch();  
return ;

}
else
{

last = temp = start;  
while(last -> next != start)

last = last -> next;  
start = start -> next;
last -> next = start;  
free(temp);

nodectr--;
printf("\n Node deleted..");  

if(nodectr == 0)

start = NULL;
}

}

void cll_delete_last()
{

node *temp,*prev;  
if(start == NULL)

{
printf("\n No nodes  
exist.."); getch();  
return ;

}
else
{

temp = start;

prev = start;

while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}
prev -> next = start;  
free(temp); nodectr-

-;
if(nodectr == 0) start

= NULL;

printf("\n Node deleted..");
}

}



void cll_delete_mid()
{

int i = 0, pos;
node *temp, *prev;

if(start == NULL)
{

printf("\n No nodes  
exist.."); getch();  
return ;

}
else
{

printf("\n Which node to delete: ");  
scanf("%d", &pos);
if(pos > nodectr)
{

printf("\nThis node does not  
exist"); getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp=start;  
prev = start;  
i = 0;

while(i < pos - 1)
{

prev = temp;
temp = temp -> next ;  
i++;

}
prev -> next = temp -> next;  
free(temp);
nodectr--;
printf("\n Node Deleted..");

}
else
{

printf("\n It is not a middle position..");  
getch();

}
}

}

void main(void)
{

int result;  
int ch, n;  
clrscr();  
while(1)

{
ch = menu();  
switch(ch)
{

case 1 :
if(start == NULL)
{

printf("\n Enter Number of nodes to create: ");  
scanf("%d", &n);

createlist(n);  
printf("\nList created..");

}



else
printf("\n List is already Exist..");

break;  
case 2 :

cll_insert_beg();  
break;

case 3 :
cll_insert_end();  
break;

case 4 :
cll_insert_mid();  
break;

case 5 :
cll_delete_beg();  
break;

case 6 : cll_delete_last();

break;

case 7 :
cll_delete_mid();  
break;

case 8 :
display();  
break;

case 9 :
exit(0);

}
getch();

}
}

Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in

circular manner. The objective behind considering circular double linked list is to

simplify the insertion and deletion operations performed on double linked list. In

circular double linked list the right link of the right most node points back to the start

node and left link of the first node points to the last node. A circular double linked list is

shown in figure 3.8.1.
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Figure 3.8.1. Circular Double Linked List

The basic operations in a circular double linked list are:

•

•

•

•

Creation.  

Insertion.  

Deletion.  

Traversing.



Creating a Circular Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‗n‘ number of nodes:

• Get the new node using getnode().  
newnode = getnode();

• If the list is empty, then do the following  

start = newnode;

newnode -> left = start;  
newnode ->right = start;

• If the list is not empty, follow the steps given below:  

newnode -> left = start -> left;

newnode -> right = start; start
-> left->right = newnode; start
-> left = newnode;

• Repeat the above steps ‗n‘ times.

The function cdll_createlist(), is used to create ‗n‘ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

• Get the new node using getnode().  

newnode=getnode();

• If the list is empty, then  

start = newnode;  

newnode -> left = start;

newnode -> right = start;

• If the list is not empty, follow the steps given below:  

newnode -> left = start -> left;

newnode -> right = start;
start -> left -> right = newnode;  
start -> left = newnode;
start = newnode;

The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure
3.8.2 shows inserting a node into the circular double linked list at the beginning.
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Figure 3.8.2. Inserting a node at the beginning



Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

• Get the new node using getnode()  

newnode=getnode();

• If the list is empty, then  

start = newnode;  

newnode -> left = start;

newnode -> right = start;

• If the list is not empty follow the steps given below:  

newnode -> left = start -> left;

newnode -> right = start;
start -> left -> right = newnode;  

start -> left = newnode;

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3  

shows inserting a node into the circular linked list at the end.
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Figure 3.8.3. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the  
list:

• Get the new node using getnode().  

newnode=getnode();

• Ensure that the specified position is in between first node and last node. If  

not, specified position is invalid. This is done by countnode() function.

• Store the starting address (which is in start pointer) in temp. Then traverse  

the temp pointer upto the specified position.

• After reaching the specified position, follow the steps given below:  

newnode -> left = temp; newnode

-> right = temp -> right; temp ->  

right -> left = newnode; temp ->

right = newnode; nodectr++;



The function cdll_insert_mid(), is used for inserting a node in the intermediate position.

Figure 3.8.4 shows inserting a node into the circular double linked list at a specified

intermediate position other than beginning and end.
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Figure 3.8.4. Inserting a node at an intermediate position

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given 

below:  temp = start;

start = start -> right;
temp -> left -> right = start;  

start -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure
3.8.5 shows deleting a node at the beginning of a circular double linked list.
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Figure 3.8.5. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

• If list is empty then display ‗Empty List‘ message

• If the list is not empty, follow the steps given below:



temp = start;
while(temp -> right != start)
{

temp = temp -> right;
}
temp -> left -> right = temp -> right;  
temp -> right -> left = temp -> left;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure 3.8.6  

shows deleting a node at the end of a circular double linked list.
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Figure 3.8.6. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the  
list (List must contain more than two node).

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given below:

• Get the position of the node to delete.

• Ensure that the specified position is in between first node and last  
node. If not, specified position is invalid.

• Then perform the following steps:

if(pos > 1 && pos < nodectr)
{

temp = start;  

i = 1;

while(i < pos)
{

temp = temp -> right ;  

i++;

}
temp -> right -> left = temp -> left;  

temp -> left -> right = temp -> right;  

free(temp);

printf("\n node deleted..");  
nodectr--;

}

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.



Figure 3.8.7 shows deleting a node at a specified intermediate position other than  

beginning and end from a circular double linked list.
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Figure 3.8.7. Deleting a node at an intermediate position

Traversing a circular double linked list from left to right:

The following steps are followed, to traverse a list from left to right:

E. If list is empty then display ‗Empty List‘ message.

F. If the list is not empty, follow the steps given below:  

temp = start;

Print temp -> data;  

temp = temp -> right;  

while(temp != start)

{
print temp -> data;  

temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:

The following steps are followed, to traverse a list from right to left:

E. If list is empty then display ‗Empty List‘ message.

F. If the list is not empty, follow the steps given below:  
temp = start;
do
{

temp = temp -> left;  
print temp -> data;

} while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to left.

Source Code for Circular Double Linked List:

include <stdio.h>
include <stdlib.h>
include <conio.h>



struct cdlinklist
{

struct cdlinklist
*left; int data;
struct cdlinklist *right;

};

typedef struct cdlinklist  
node; node *start = NULL;  
int nodectr;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));  

printf("\n Enter data: ");

scanf("%d", &newnode -> data);  
newnode -> left = NULL;  
newnode -> right = NULL;  
return newnode;

}

int menu()
{

int ch;  
clrscr();

printf("\n 1. Create ");

printf("\n\n ");  
printf("\n 2. Insert a node at Beginning");

printf("\n 3. Insert a node at End");
printf("\n 4. Insert a node at Middle");  

printf("\n\n ");  

printf("\n 5. Delete a node from Beginning");  

printf("\n 6. Delete a node from End");  

printf("\n 7. Delete a node from Middle");  

printf("\n\n ");
printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);

return ch;
}

void cdll_createlist(int n)
{

int i;
node *newnode, *temp;

if(start == NULL)

{
nodectr = n;
for(i = 0; i < n; i++)
{

newnode = getnode();

if(start == NULL)

{
start = newnode;  

newnode -> left = start;  

newnode ->right = start;

}
else
{

newnode -> left = start -> left;



newnode -> right = start; start
-> left->right = newnode;  
start -> left = newnode;

}

}
}
else

printf("\n List already exists..");
}

void cdll_display_left_right()
{

node *temp;  

temp = start;

if(start == NULL)

printf("\n Empty List");
else
{

printf("\n The contents of List:  
"); printf(" %d ", temp -> data);  
temp = temp -> right;  
while(temp != start)

{
printf(" %d ", temp -> data);  
temp = temp -> right;

}
}

}

void cdll_display_right_left()
{

node *temp;  

temp = start;  

if(start == NULL)

printf("\n Empty List");
else
{

printf("\n The contents of List:  
"); do

{
temp = temp -> left;  

printf("\t%d", temp -> data);

} while(temp != start);
}

}

void cdll_insert_beg()
{

node *newnode;  

newnode = getnode();  

nodectr++;

if(start == NULL)
{

start = newnode;  
newnode -> left = start;  
newnode -> right = start;

}
else
{

newnode -> left = start -> left;  
newnode -> right = start;
start -> left -> right = newnode;  
start -> left = newnode;



start = newnode;
}

}

void cdll_insert_end()
{

node *newnode,*temp;
newnode = getnode();
nodectr++;

if(start == NULL)
{

start = newnode;  
newnode -> left = start;  
newnode -> right = start;

}
else
{

newnode -> left = start -> left;  
newnode -> right = start;
start -> left -> right = newnode;  
start -> left = newnode;

}
printf("\n Node Inserted at End");

}

void cdll_insert_mid()
{

node *newnode, *temp, *prev;  
int pos, ctr = 1;
newnode = getnode();  
printf("\n Enter the position: ");  
scanf("%d", &pos);

if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");  
return;

}
if(pos > 1 && pos <= nodectr)
{

temp = start;  

while(ctr < pos - 1)

{
temp = temp -> right;  
ctr++;

}
newnode -> left = temp; newnode
-> right = temp -> right; temp ->  
right -> left = newnode; temp ->  
right = newnode; nodectr++;

printf("\n Node Inserted at Middle.. ");
}
else

printf("position %d of list is not a middle position", pos);
}

}

void cdll_delete_beg()
{

node *temp;

if(start == NULL)

{
printf("\n No nodes exist..");



getch();  

return ;

}
else
{

nodectr--;  
if(nodectr == 0)

{
free(start);  

start = NULL;

}
else
{

temp = start;
start = start -> right;
temp -> left -> right = start;  
start -> left = temp -> left;  
free(temp);

}
printf("\n Node deleted at Beginning..");

}
}

void cdll_delete_last()
{

node *temp;  

if(start == NULL)

{
printf("\n No nodes  
exist.."); getch();  
return;

}
else
{

nodectr--;  
if(nodectr == 0)
{

free(start);  

start = NULL;

}
else
{

temp = start;
while(temp -> right != start)  

temp = temp -> right;
temp -> left -> right = temp -> right;  
temp -> right -> left = temp -> left;  
free(temp);

}
printf("\n Node deleted from end ");

}
}

void cdll_delete_mid()
{

int ctr = 1, pos;  
node *temp;
if( start == NULL)
{

printf("\n No nodes  
exist.."); getch();  
return;

}



else
{

printf("\n Which node to delete: ");  
scanf("%d", &pos);

if(pos > nodectr)
{

printf("\nThis node does not  
exist"); getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;  

while(ctr < pos)

{
temp = temp -> right ;  
ctr++;

}
temp -> right -> left = temp -> left;  
temp -> left -> right = temp -> right;  
free(temp);
printf("\n node deleted..");  
nodectr--;

}
else
{

printf("\n It is not a middle position..");  
getch();

}
}

}

void main(void)
{

int ch,n;
clrscr();
while(1)

{
ch = menu();  
switch( ch)

{
case 1 :

printf("\n Enter Number of nodes to create: ");  
scanf("%d", &n);
cdll_createlist(n);  
printf("\n List  
created.."); break;

case 2 : cdll_insert_beg();

break;

case 3 : cdll_insert_end();

break;

case 4 :
cdll_insert_mid();  
break;

case 5 : cdll_delete_beg();

break;

case 6 :
cdll_delete_last();  
break;



case 7 :
cdll_delete_mid();  
break;

case 8 :

cdll_display_left_right();  
break;

case 9 :
cdll_display_right_left();  
break;

case 10:
exit(0);

}
getch();

}
}

9. Comparison of Linked List Variations:

The major disadvantage of doubly linked lists (over singly linked lists) is that they

require more space (every node has two pointer fields instead of one). Also, the code to

manipulate doubly linked lists needs to maintain the prev fields as well as the next

fields; the more fields that have to be maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that they make some operations (like the

removal of a given node, or a right-to-left traversal of the list) more efficient.

The major advantage of circular lists (over non-circular lists) is that they eliminate

some extra-case code for some operations (like deleting last node). Also, some

applications lead naturally to circular list representations. For example, a computer

network might best be modeled using a circular list.

10. Polynomials:

A polynomial is of the form: ∑
n 

ci x
i  

i =0

Where, ci is the coefficient of the ith term and  

n is the degree of the polynomial

Some examples are:

5x2 + 3x + 1

12x3 – 4x

5x4 – 8x3 + 2x2 + 4x1 + 9x0

It is not necessary to write terms of the polynomials in decreasing order of degree. In

other words the two polynomials 1 + x and x + 1 are equivalent.

The computer implementation requires implementing polynomials as a list of pairs of

coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial

will be represented as a list of structures. A linked list structure that represents

polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0 illustrates in figure 3.10.1.
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Source code for polynomial creation with help of linked list:

#include <conio.h>  
#include <stdio.h>  
#include <malloc.h>

struct link
{

float coef;  

int expo;

struct link *next;
};

typedef struct link node;  
node * getnode()

{
node *tmp;
tmp =(node *) malloc( sizeof(node) );  
printf("\n Enter Coefficient : ");  
fflush(stdin); scanf("%f",&tmp-

>coef);
printf("\n Enter Exponent : ");  
fflush(stdin);  
scanf("%d",&tmp->expo);  
tmp->next = NULL;

return tmp;
}
node * create_poly (node *p )
{

char ch;
node *temp,*newnode;  
while( 1 )
{

printf ("\n Do U Want polynomial node (y/n):  
"); ch = getche();

if(ch == 'n')
break;

newnode = getnode();  

if( p == NULL )

p = newnode;
else
{

temp = p; while(temp-
>next != NULL )

temp = temp->next;  
temp->next = newnode;

}

}
return p;

}



void display (node *p)
{

node *t = p;  
while (t != NULL)

{
printf("+ %.2f", t -> coef);
printf("X^ %d", t -> expo);  
t =t -> next;

}
}

void main()
{

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;  
clrscr();
printf("\nEnter First Polynomial..(in ascending-order of exponent)");  
poly1 = create_poly (poly1);
printf("\nEnter Second Polynomial..(in ascending-order of exponent)");  
poly2 = create_poly (poly2);

clrscr();
printf("\n Enter Polynomial 1:
"); display (poly1);
printf("\n Enter Polynomial 2:
"); display (poly2);  

getch();
}

Addition of Polynomials:

To add two polynomials we need to scan them once. If we find terms with the same

exponent in the two polynomials, then we add the coefficients; otherwise, we copy the

term of larger exponent into the sum and go on. When we reach at the end of one of

the polynomial, then remaining part of the other is copied into the sum.

To add two polynomials follow the following steps:

•

•

•

Read two polynomials.  

Add them.

Display the resultant polynomial.

Source code for polynomial addition with help of linked list:

#include <conio.h>  
#include <stdio.h>  
#include <malloc.h>

struct link
{

float coef;  

int expo;

struct link *next;
};

typedef struct link node;  

node * getnode()

{
node *tmp;
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tmp =(node *) malloc( sizeof(node) );  
printf("\n Enter Coefficient : ");  
fflush(stdin); scanf("%f",&tmp-

>coef);
printf("\n Enter Exponent : ");  
fflush(stdin);  
scanf("%d",&tmp->expo);  
tmp->next = NULL;

return tmp;

}

node * create_poly (node *p )
{

char ch;
node *temp,*newnode;  
while( 1 )

{
printf ("\n Do U Want polynomial node (y/n):  
"); ch = getche();

if(ch == 'n')
break;

newnode = getnode();  

if( p == NULL )

p = newnode;
else
{

temp = p; while(temp-
>next != NULL )

temp = temp->next;  
temp->next = newnode;

}

}
return p;

}

void display (node *p)
{

node *t = p;  
while (t != NULL)

{
printf("+ %.2f", t -> coef);
printf("X^ %d", t -> expo);  
t = t -> next;

}
}

void add_poly(node *p1,node *p2)
{

node *newnode;  
while(1)
{

if( p1 == NULL || p2 == NULL
) break;

if(p1->expo == p2->expo )
{

printf("+ %.2f X ^%d",p1->coef+p2->coef,p1->expo);  
p1 = p1->next; p2 = p2->next;

}
else
{

if(p1->expo < p2->expo)



{
printf("+ %.2f X ^%d",p1->coef,p1->expo);  
p1 = p1->next;

}
else
{

printf(" + %.2f X ^%d",p2->coef,p2-
>expo); p2 = p2->next;

}
}

}
while(p1 != NULL )
{

printf("+ %.2f X ^%d",p1->coef,p1->expo);  
p1 = p1->next;

}
while(p2 != NULL )
{

printf("+ %.2f X ^%d",p2->coef,p2->expo);  
p2 = p2->next;

}
}

void main()
{

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;  
clrscr();
printf("\nEnter First Polynomial..(in ascending-order of exponent)");  
poly1 = create_poly (poly1);
printf("\nEnter Second Polynomial..(in ascending-order of exponent)");  
poly2 = create_poly (poly2);

clrscr();
printf("\n Enter Polynomial 1:
"); display (poly1);
printf("\n Enter Polynomial 2:
"); display (poly2);
printf( "\n Resultant Polynomial :
"); add_poly(poly1, poly2);  

display (poly3);

getch();

}

Exercise

1. Write a ―C‖ functions to split a given list of integers represented by a single

linked list into two lists in the following way. Let the list be L = (l0, l1, ….., ln).

The resultant lists would be R1 = (l0, l2, l4, …..) and R2 = (l1, l3, l5, …..).

2. Write a ―C‖ function to insert a node ―t‖before a node pointed to by ―X‖ in a single

linked list ―L‖.

3. Write a ―C‖function to delete a node pointed to by ―p‖from a single linked list
―L‖.

4. Suppose that an ordered list L = (l0, l1, …..,ln) is represented by a single linked

list. It is required to append the list L = (ln, l0, l1, ….., ln) after another ordered

list M represented by a single linked list.



5. Implement the following function as a new function for the linked list  

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might  
be empty or it might be non-empty.

Postcondition: The return value is the number of occurrences of 42 in  

the data field of a node on the linked list. The list itself is unchanged.

6. Implement the following function as a new function for the linked list  

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might  
be empty or it might be non-empty.

Postcondition: The return value is true if the list has at least one  

occurrence of the number 42 in the data part of a node.

7. Implement the following function as a new function for the linked list  

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might  
be empty or it might be non-empty.

Postcondition: The return value is the sum of all the data components of  

all the nodes. NOTE: If the list is empty, the function returns 0.

8. Write a ―C‖ function to concatenate two circular linked lists producing another  

circular linked list.

9. Write ―C‖ functions to compute the following operations on polynomials  

represented as singly connected linked list of nonzero terms.

1. Evaluation of a polynomial
2. Multiplication of two polynomials.

10. Write a ―C‖ function to represent a sparse matrix having ―m‖ rows and ―n‖

columns using linked list.

11. Write a ―C‖function to print a sparse matrix, each row in one line of output and  

properly formatted, with zero being printed in place of zero elements.

12. Write ―C‖functions to:

1. Add two m X n sparse matrices and
2. Multiply two m X n sparse matrices.

Where all sparse matrices are to be represented by linked lists.

13. Consider representing a linked list of integers using arrays. Write a ―C‖function  

to delete the ith node from the list.



Multiple Choice Questions

1. Which among the following is a linear data structure: [ D ]

A. Queue
B. Stack

C. Linked List
D. all the above

2. Which among the following is a dynamic data structure: [ A ]

C. Stack
D. all the above

A. Double Linked List
B. Queue

3. The link field in a node contains:
A. address of the next node
B. data of previous node

[ A ]
C. data of next node
D. data of current node

4. Memory is allocated dynamically to a data structure during execution  

by ------- function.
[ D ]

A. malloc()
B. Calloc()

C. realloc()
D. all the above

5. How many null pointer/s exist in a circular double linked list? [ D ]

A. 1
B. 2

C. 3
D. 0

[ ]

6. Suppose that p is a pointer variable that contains the NULL pointer.  
What happens if your program tries to read or write *p?
A. A syntax error always occurs at compilation time.
B. A run-time error always occurs when *p is evaluated.
C. A run-time error always occurs when the program finishes.
D. The results are unpredictable.

[ A ]
7. What kind of list is best to answer questions such as: "What is the  

item at position n?"

A. Lists implemented with an array.
B. Doubly-linked lists.
C. Singly-linked lists.
D. Doubly-linked or singly-linked lists are equally best.

8. In a single linked list which operation depends on the length of the list. [ A ]
A. Delete the last element of the list
B. Add an element before the first element of the list
C. Delete the first element of the list
D. Interchange the first two elements of the list

9. A double linked list is declared as follows: [ A ] struct dllist

{
struct dllist *fwd, *bwd;  
int data;

}
Where fwd and bwd represents forward and backward links to adjacent  

elements of the list. Which among the following segments of code  

deletes the element pointed to by X from the double linked list, if it is  

assumed that X points to neither the first nor last element of the list?



A. X -> bwd -> fwd = X -> fwd;  

X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;  
X -> fwd -> bwd = X -> fwd

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd

D. X -> bwd -> bwd = X -> bwd;  
X -> fwd -> fwd = X -> fwd

10. Which among the following segment of code deletes the element  

pointed to by X from the double linked list, if it is assumed that X  

points to the first element of the list and start pointer points to  

beginning of the list?

A. X -> bwd = X -> fwd;  

X -> fwd = X -> bwd

B. start = X -> fwd;  

start -> bwd = NULL;

C. start = X -> fwd;  

X -> fwd = NULL

D. X -> bwd -> bwd = X -> bwd;  

X -> fwd -> fwd = X -> fwd

[ B ]

11. Which among the following segment of code deletes the element  

pointed to by X from the double linked list, if it is assumed that X  

points to the last element of the list?

A. X -> fwd -> bwd = NULL;
B. X -> bwd -> fwd = X -> bwd;
C. X -> bwd -> fwd = NULL;
D. X -> fwd -> bwd = X -> bwd;

[ C ]

12. Which among the following segment of code counts the number of  

elements in the double linked list, if it is assumed that X points to the  

first element of the list and ctr is the variable which counts the number  

of elements in the list?

A. for (ctr=1; X != NULL; 
ctr++)  X = X -> fwd;

B. for (ctr=1; X != NULL; 
ctr++)  X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; 
ctr++)  X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; 
ctr++)  X = X -> bwd;

[ A ]

13. Which among the following segment of code counts the number of  

elements in the double linked list, if it is assumed that X points to the  

last element of the list and ctr is the variable which counts the number  

of elements in the list?

A. for (ctr=1; X != NULL; 

ctr++)  X = X -> fwd;

B. for (ctr=1; X != NULL; 
ctr++)  X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; 

ctr++)  X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; 

ctr++)  X = X -> bwd;

[ B ]



14. Which among the following segment of code inserts a new node  

pointed by X to be inserted at the beginning of the double linked list.  

The start pointer points to beginning of the list?

[ B ]

A. X -> bwd = X -> fwd;

X -> fwd = X -> bwd;

B. X -> fwd = start;
start -> bwd = X;

start = X;

C. X -> bwd = X -> fwd;

X -> fwd = X -> bwd;

start = X;

D. X -> bwd -> bwd = X -> bwd;

X -> fwd -> fwd = X -> fwd

15. Which among the following segments of inserts a new node pointed by [ C ]  

X to be inserted at the end of the double linked list. The start and last  

pointer points to beginning and end of the list respectively?

A. X -> bwd = X -> fwd;  

X -> fwd = X -> bwd

B. X -> fwd = start;  

start -> bwd = X;

C. last -> fwd = X;  

X -> bwd = last;

D. X -> bwd = X -> bwd;  

X -> fwd = last;

16. Which among the following segments of inserts a new node pointed by [ D ]
X to be inserted at any position (i.e neither first nor last) element of
the double linked list? Assume temp pointer points to the previous  

position of new node.

A. X -> bwd -> fwd = X -> fwd;  

X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;  

X -> fwd -> bwd = X -> fwd

C. temp -> fwd = X;
temp -> bwd = X -> fwd;  
X ->fwd = x
X ->fwd->bwd = temp

D. X -> bwd = temp;
X -> fwd = temp -> fwd;  
temp ->fwd = X;
X -> fwd -> bwd = X;



17. A single linked list is declared as follows:  

struct sllist

{
struct sllist *next;  

int data;

}
Where next represents links to adjacent elements of the list.

[ A ]

Which among the following segments of code deletes the element  

pointed to by X from the single linked list, if it is assumed that X  

points to neither the first nor last element of the list? prev pointer  

points to previous element.

A. prev -> next = X -> next;  

free(X);

B. X -> next = prev-> next;  
free(X);

C. prev -> next = X -> next;  
free(prev);

D. X -> next = prev -> next;  
free(prev);

18. Which among the following segment of code deletes the element  

pointed to by X from the single linked list, if it is assumed that X  

points to the first element of the list and start pointer points to  

beginning of the list?

[ B ]

A. X = start -> next;  

free(X);

B. start = X -> next;  
free(X);

C. start = start -> next;
free(start);

D. X = X -> next;  

start = X;  

free(start);

19. Which among the following segment of code deletes the element  

pointed to by X from the single linked list, if it is assumed that X  

points to the last element of the list and prev pointer points to last but  

one element?

[ C ]

A. prev -> next = NULL;  

free(prev);

B. X -> next = NULL;  
free(X);

C. prev -> next = NULL;  
free(X);

D X -> next = prev;  
free(prev);



20. Which among the following segment of code counts the number of  

elements in the single linked list, if it is assumed that X points to the  

first element of the list and ctr is the variable which counts the number  

of elements in the list?

[ A ]

A. for (ctr=1; X != NULL; ctr++)  
X = X -> next;

B. for (ctr=1; X != NULL; ctr--)  

X = X -> next;

C. for (ctr=1; X -> next != NULL; ctr++)  

X = X -> next;

D. for (ctr=1; X -> next != NULL; ctr--)  
X = X -> next;

21. Which among the following segment of code inserts a new node  

pointed by X to be inserted at the beginning of the single linked list.  

The start pointer points to beginning of the list?

[ B ]

A. start -> next = X;  

X = start;

B. X -> next = start;  
start = X

C. X -> next = start -> next;
start = X

D. X -> next = start;  
start = X -> next

22. Which among the following segments of inserts a new node pointed by [ C ]  

X to be inserted at the end of the single linked list. The start and last  pointer 

points to beginning and end of the list respectively?

A. last -> next = X;  

X -> next = start;

B. X -> next = last;  
last ->next = NULL;

C. last -> next = X;
X -> next = NULL;

D. last -> next = X -> next;  

X -> next = NULL;

22. Which among the following segments of inserts a new node pointed by [ D ]
X to be inserted at any position (i.e neither first nor last) element of  

the single linked list? Assume prev pointer points to the previous  

position of new node.

A. X -> next = prev -> next;  

prev -> next = X -> next;

B. X = prev -> next;
prev -> next = X -> next;

C. X -> next = prev;  
prev -> next = X;

D. X -> next = prev -> next;  
prev -> next = X;



24. A circular double linked list is declared as follows:  

struct cdllist

{
struct cdllist *fwd, *bwd;  

int data;

}
Where fwd and bwd represents forward and backward links to adjacent  
elements of the list.

[ A ]

Which among the following segments of code deletes the element  

pointed to by X from the circular double linked list, if it is assumed  

that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;  

X -> fwd -> bwd = X -> bwd;

B. X -> bwd -> fwd = X -> bwd;  
X -> fwd -> bwd = X -> fwd;

C. X -> bwd -> bwd = X -> fwd;  
X -> fwd -> fwd = X -> bwd;

D. X -> bwd -> bwd = X -> bwd;  
X -> fwd -> fwd = X -> fwd;

25. Which among the following segment of code deletes the element  

pointed to by X from the circular double linked list, if it is assumed  

that X points to the first element of the list and start pointer points to  

beginning of the list?

[ D ]

A. start = start -> bwd;
X -> bwd -> bwd = start;  

start -> bwd = X -> bwd;

B. start = start -> fwd;
X -> fwd -> fwd = start;  
start -> bwd = X -> fwd

C. start = start -> bwd;
X -> bwd -> fwd = X;  
start -> bwd = X -> bwd

D. start = start -> fwd;
X -> bwd -> fwd = start;  

start -> bwd = X -> bwd;

26. Which among the following segment of code deletes the element  

pointed to by X from the circular double linked list, if it is assumed  

that X points to the last element of the list and start pointer points to  

beginning of the list?

[ B ]

A. X -> bwd -> fwd = X -> fwd;  

X -> fwd -> fwd= X -> bwd;

B. X -> bwd -> fwd = X -> fwd;  
X -> fwd -> bwd = X -> bwd;

C. X -> fwd -> fwd = X -> bwd;
X -> fwd -> bwd= X -> fwd;

D. X -> bwd -> bwd = X -> fwd;  

X -> bwd -> bwd = X -> bwd;



27. Which among the following segment of code counts the number of  

elements in the circular double linked list, if it is assumed that X and  

start points to the first element of the list and ctr is the variable which  

counts the number of elements in the list?

A. for (ctr=1; X->fwd != start; 
ctr++)  X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)
X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; 
ctr++)  X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; 
ctr++)  X = X -> bwd;

[ A ]

28. Which among the following segment of code inserts a new node  

pointed by X to be inserted at the beginning of the circular double  

linked list. The start pointer points to beginning of the list?

[ B ]

A. X -> bwd = start;
X -> fwd = start -> fwd;

start -> bwd-> fwd = X;

start -> bwd = X;

start = X

C. X -> fwd = start -> bwd;

X -> bwd = start;
start -> bwd-> fwd = X;  

start -> bwd = X;

start = X

B. X -> bwd = start ->  

bwd; X -> fwd = start;  

start -> bwd-> fwd =  X; 

start -> bwd = X;  start 

= X

D. X -> bwd = start ->  

bwd; X -> fwd = start;  

start -> fwd-> fwd = X;  

start -> fwd = X;

X = start;

29. Which among the following segment of code inserts a new node  pointed 

by X to be inserted at the end of the circular double linked list.  The 

start pointer points to beginning of the list?

[ C ]

C. X -> bwd= start -> bwd;  

X-> fwd = start;

start -> bwd -> fwd = X;  

start -> bwd = X;

A. X -> bwd = start;
X -> fwd = start -> fwd;
start -> bwd -> fwd = X;
start -> bwd = X;
start = X

D. X -> bwd = start -> bwd;

X -> fwd = start;

start -> fwd-> fwd = X;

start -> fwd = X;  

X = start;

B. X -> bwd = start -> bwd;  

X -> fwd = start;

start -> bwd -> fwd = X;  

start -> bwd = X;

start = X

30. Which among the following segments of inserts a new node pointed by [ D ]
X to be inserted at any position (i.e neither first nor last) element of  

the circular double linked list? Assume temp pointer points to the  

previous position of new node.

A. X -> bwd -> fwd = X -> fwd;  

X -> fwd -> bwd = X -> bwd;
C. temp -> fwd = X;

temp -> bwd = X -> fwd;  
X -> fwd = X;
X -> fwd -> bwd = temp;

D. X -> bwd = temp;

X -> fwd = temp -> fwd;  
temp -> fwd = X;

X -> fwd -> bwd = X;

B. X -> bwd -> fwd = X -> bwd;  

X -> fwd -> bwd = X -> fwd;



Chapter

5

Lecture Notes 185 Dept. of Information Technology

Graphs

Introduction to Graphs:

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges.

We will often denote n = |V|, e = |E|.

A graph is generally displayed as figure 6.5.1, in which the vertices are represented by

circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no

orientation is our undirected edge.

If all the edges in a graph are undirected, then the graph is an undirected graph. The

graph in figure 6.5.1(a) is an undirected graph. If all the edges are directed; then the

graph is a directed graph. The graph of figure 6.5.1(b) is a directed graph. A directed

graph is also called as digraph. A graph G is connected if and only if there is a simple

path between any two nodes in G.

A graph G is said to be complete if every node a in G is adjacent to every other node v
in G. A complete graph with n nodes will have n(n-1)/2 edges. For example, Figure
6.5.1.(a) and figure 6.5.1.(d) are complete graphs.

A directed graph G is said to be connected, or strongly connected, if for each pair (u, v)

for nodes in G there is a path from u to v and also a path from v to u. On the other

hand, G is said to be unilaterally connected if for any pair (u, v) of nodes in G there is a

path from u to v or a path from v to u. For example, the digraph shown in figure 6.5.1

(e) is strongly connected.

B D
A B

v1

A C E G
E

v4 v2

C D

(a) F (b) v3 (c)

v1 v1 v1 v1

v4 v2 v4 v2 v4 v2
v2 v3

(d)
v3

(e)
v3

(f) (g)
v4 v5 v6 v7v3

Figure 6.5.1 Various Graphs

We can assign weight function to the edges: wG(e) is a weight of edge e ∈ E. The  

graph which has such function assigned is called weighted graph.



The number of incoming edges to a vertex v is called in–degree of the vertex (denote

indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote

outdeg(v)). For example, let us consider the digraph shown in figure 6.5.1(f),
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indegree(v1) = 2

indegree(v2) = 2

outdegree(v1) = 1

outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, . . . . . , vk), where for all i, (vi, vi+1) ε E. A path is

simple if all vertices in the path are distinct. If there is a path containing one or more

edges which starts from a vertex Vi and terminates into the same vertex then the path
is known as a cycle. For example, there is a cycle in figure 6.5.1(a), figure 6.5.1(c) and
figure 6.5.1(d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For

example, the graphs of figure 6.5.1 (f) and figure 6.5.1 (g) are acyclic graphs.

A graph G‘ = (V‘, E‘) is a sub-graph of graph G = (V, E) iff V‘ ⊆ V and E‘ ⊆ E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it
becomes forest. The following figure shows a forest F that consists of three trees T1, T2
and T3.

A P X

B D
Q

Y
R

Z

T1 C E F T2 T3

A Forest F

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren‘t any sequences of edges that go around

in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V

and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

• Any two vertices in T are connected by a unique simple path.

• If any edge is removed from T, then T becomes disconnected.

• If we add any edge into T, then the new graph will contain a cycle.

• Number of edges in T is n-1.



Representation of Graphs:

There are two ways of representing digraphs. They are:

•

•

•

Adjacency matrix.  

Adjacency List.

Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n  

matrix, say A = (ai,j), where

a
i, j =

1 if there is an edge from vi to v j

0 otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the  
graph is directed. This matrix is also called as Boolean matrix or bit matrix.

1

2 3
G1:

(a) 4 5 (b)

1 2 3 4 5
1 0 1 1 0 1

2 0 0 1 1 1

3 0 0 0 1 0

4 0 0 0 0 0
5 0 0 1 1 0

Figure 6.5.2. A graph and its Adjacency matrix

Figure 6.5.2(b) shows the adjacency matrix representation of the graph G1 shown in

figure 6.5.2(a). The adjacency matrix is also useful to store multigraph as well as

weighted graph. In case of multigraph representation, instead of entry 0 or 1, the entry

will be between number of edges between two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices.

The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure

6.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in

figure 6.5.3(a).

B
4

A B C D E F G
G2:

3
2

1 4

A C
4 1

G
6

D

2

E  

2
2 1

(a)
F

(b)

A 0 3 6 ∝ ∝ ∝ ∝
B 3 0 2 4 ∝ ∝ ∝
C 6 2 0 1 4 2 ∝
D ∝ 4 1 0 2 ∝ 4

E ∝ ∝ 4 2 0 2 1

F ∝ ∝ 2 ∝ 2 0 1

G ∝ ∝ ∝ 4 1 1 0

Figure 6.5.3 Weighted graph and its Cost adjacency matrix
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Adjacency List:

In this representation, the n rows of the adjacency matrix are represented as n linked

lists. An array Adj[1, 2, . . . . . n] of pointers where for 1 < v < n, Adj[v] points to a

linked list containing the vertices which are adjacent to v (i.e. the vertices that can be

reached from v by a single edge). If the edges have weights then these weights may

also be stored in the linked list elements. For the graph G in figure 6.5.4(a), the

adjacency list in shown in figure 6.5.4 (b).

1 2 3

1
1

1 2 3

22 3

33

1 1 1

0 0 1

0 1 0 2

(a) Adjacency Matrix (b) Adjacency List

Figure 6.5.4 Adjacency matrix and adjacency list

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then  

incidence matrix A is defined as an n by e matrix, say A = (ai,j), where

a
i, j

1
=

if there is an edge j incident to vi

0 otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a  

matrix is called as vertex-edge incidence matrix or simply incidence matrix.

B c D

a d f  
b e

A  

B

a b c d e f g h i j k l
1 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

A C h E i G C 0 1 0 1 0 0 1 1 0 0 1 0

g

k
j

l

D  

E

0 0 1 1 1 1 0 0 0
0 0 0 0 1 0 0 1 1 1 0 0

0 0 0

(a)
F (b) F 0 0 0 0 0 0 0 0 0 1 1 1

G 0 0 0 0 0 1 0 0 1 0 0 1

Figure 6.5.4 Graph and its incidence matrix

Figure 6.5.4(b) shows the incidence matrix representation of the graph G1 shown in  

figure 6.5.4(a).



Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the

vertex set of the given graph, and whose edge set is a subset of the edge set of the

given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum  
spanning tree (MST) is a spanning tree with the smallest possible weight.

Example:

G:

A gra ph G:
T hre e ( of ma ny po s s ible) s pa nning tre e s fro m gra ph G:

2 2

G: 3

4

35
6

1 1

A w e ight e d gra ph G: T he mini ma l s pa nning tre e fro m w e ight e d gra ph G:

Let's consider a couple of real-world examples on minimum spanning tree:

10. One practical application of a MST would be in the design of a network. For

instance, a group of individuals, who are separated by varying distances,

wish to be connected together in a telephone network. Although MST cannot

do anything about the distance from one connection to another, it can be

used to determine the least cost paths with no cycles in this network,

thereby connecting everyone at a minimum cost.

11. Another useful application of MST would be finding airline routes. The

vertices of the graph would represent cities, and the edges would represent

routes between the cities. MST can be applied to optimize airline routes by

finding the least costly paths with no cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

\{

\{

Kruskal‘s algorithm and  

Prim‘s algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST.

Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in

determining the MST. In Prim’s algorithm at any instance of output it represents tree

whereas in Kruskal’s algorithm at any instance of output it may represent tree or not.



Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.

picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges

have been added. Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST‘s

may result, but they will all have the same total cost, which will always be the

minimum cost.

Kruskal‘s Algorithm for minimal spanning tree is as follows:

1.9.

1.10.

Make the tree T empty.

Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges

and E is not empty otherwise, proceed to step 6.

1.11.

1.12.

1.13.

Choose an edge (v, w) from E of lowest cost.  

Delete (v, w) from E.

If (v, w) does not create a cycle in T

then Add (v, w) to T

else discard (v, w)

6. If T contains fewer than n - 1 edges then print no spanning tree.

Example 1:

Construct the minimal spanning tree for the graph shown below:

1 2

30

10

45 3

55

50

40
35

5

15

4 25

20

6

Arrange all the edges in the increasing order of their costs:



The stages in Kruskal‘s algorithm for minimal spanning tree is as follows:

EDGE COST
STAGES IN KRUSKAL’S  

ALGORITHM
REMARKS

(1, 2) 10 The edge between vertices 1 and 2 is

1 2

3

the first edge selected. It is included in

the spanning tree.

4 5

6

(3, 6) 15 Next, the edge between vertices 3 and 6

1 2
is selected and included in the tree.

3

4 5

6

(4, 6) 20
1 2

3

The edge between vertices 4 and 6 is  

next included in the tree.

4 5

6

(2, 6) 25
1 2

3

The edge between vertices 2 and 6 is  

considered next and included in the  

tree.

4 5

6

(1, 4) 30 Reject The edge between the vertices 1 and 4  
is discarded as its inclusion creates a  
cycle.

(3, 5) 35
1 2

3

Finally, the edge between vertices 3 and  

5 is considered and included in the tree  

built. This completes the tree.

4 5
The cost of the minimal spanning tree is

6 105.



Cost 10 12 14 16 18 22 24 25 28

Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2)

EDGE COST
STAGES IN KRUSKAL’S  

ALGORITHM
REMARKS

(1, 6) 10 1 The edge between vertices 1 and 6 is

2 the first edge selected. It is included in

6
3

the spanning tree.

7

5

4

(3, 4) 12 1 Next, the edge between vertices 3 and 4

2 is selected and included in the tree.

6 3

7

5

4

(2, 7) 14 1 The edge between vertices 2 and 7 is

2 next included in the tree.

6 3

7

5

4

Example 2:

Construct the minimal spanning tree for the graph shown below:

1 28

10
2

6 16
14

7

24
25

3

5 18
12

22 4

Solution:

Arrange all the edges in the increasing order of their costs:

The stages in Kruskal‘s algorithm for minimal spanning tree is as follows:



(2, 3) 16 1

2

The edge between vertices 2 and 3 is  
next included in the tree.

6
3

7

5

4

The edge between the vertices 4 and 7

(4, 7) 18 Reject is discarded as its inclusion creates a

cycle.

(4, 5) 22 1

2

6

The edge between vertices 4 and 7 is  
considered next and included in the  
tree.

3
7

5

4

(5, 7) 24 Reject The edge between the vertices 5 and 7  
is discarded as its inclusion creates a  
cycle.

(5, 6) 25 1

2

Finally, the edge between vertices 5 and  
6 is considered and included in the tree

6
built. This completes the tree.

3

7

5

The cost of the minimal spanning tree is  
99.

4

MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we

have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is

labeled with a number (edge labels may signify lengths, weights other than costs).

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as

small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for

finding an MST. In the spanning tree algorithm, any vertex not in the tree but

connected to it by an edge can be added. To find a Minimal cost spanning tree, we

must be selective - we must always add a new vertex for which the cost of the new

edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an

Minimal cost spanning tree. Prim's algorithm is an example of a greedy algorithm.



Prim’s Algorithm:

E is the set of edges in G. cost [1:n, 1:n] is the cost adjacency matrix of an n vertex

graph such that cost [i, j] is either a positive real number or ∝ if no edge (i, j) exists. A

minimum spanning tree is computed and stored as a set of edges in the array t [1:n-1,

1:2]. (t [i, 1], t [i, 2]) is an edge in the minimum-cost spanning tree. The final cost is

returned.

Algorithm Prim (E, cost, n, t)
{

Let (k, l) be an edge of minimum cost in E;  
mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;
for  i :=1 to n do // Initialize near  

if (cost [i, l] < cost [i, k]) then near [i] := l;

else near [i] := k;

near [k] :=near [l] := 0;  
for i:=2 to n - 1 do
{

// Find n - 2 additional edges for t.

Let j be an index such that near [j] ≠ 0
and cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];  
mincost := mincost + cost [j, near  
[j]]; near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k] ≠ 0) and (cost [k, near [k]] > cost [k,  
j])) then near [k] := j;

}
return mincost;

}

EXAMPLE:

Use Prim‘s Algorithm to find a minimal spanning tree for the graph shown below  
starting with the vertex A.

4
B D

3 2 1 2
4

4 E 1

2

2 F

A
6

C G

1

Solution:
0 3 6 ∞ ∞ ∞

3 0 2  4 ∞ ∞

∞

∞

6 2 0 1 4 2 ∞

The cost adjacency matrix is ∞ 4 1 0 2 ∞ 4

∞ ∞ 4 2 0 2 1

∞ ∞ 2 ∞ 2 0 1

∞ ∞ ∞ 4 1 1 0



The stepwise progress of the prim‘s algorithm is as follows:

Step 1:

B 3

A 0 6

∝ D Vertex A B C D E F G
Status 0 1 1 1 1 1 1

∝ E

∝ G

Dist.  
Next

0
*

3
A

6
A

∝
A

∝
A

∝
A

∝
A

∝ F
C

Step 2:

B 3

A 0 2

C

A 0 2

C

A 0 2

C

Step 5:

B 3

A 0 2

C

Step 3:

1 D

B 3

4 E

9. F

1.9.D Vertex A B C D E F G

Status 0 0 1 1 1 1 1

E
∝ G

Dist.  
Next

0
*

3
A

2
B

4
B

∝
A

∝
A

∝
A

∝ G

2 F

Step 4:

1 D

2 E 4 G

2 F

1 D

2 E 1 G

2 F

Vertex A B C D E F G
Status 0 0 0 1 1 1 1

Dist. 0 3 2 1 4 2 ∝
Next * A B C C C A

Vertex A B C D E F G
Status 0 0 0 0 1 1 1

Dist. 0 3 2 1 2 2 4

Next * A B C D C D

Vertex A B C D E F G
Status 0 0 0 0 1 0 1
Dist. 0 3 2 1 2 2 1

Next * A B C D C E



Step 6:

B 3 1 D
Vertex A B C D E F G

Status 0 0 0 0 0 1 0
Dist. 0 3 2 1 2 1 1

Next * A B C D G E
A 0 2 1 G2

C E

1 F

Step 7:

B 3 1 D Vertex A B C D E F G
Status 0 0 0 0 0 0 0
Dist. 0 3 2 1 2 1 1

Next * A B C D G E
2 E

A 0 2 1 G

• 1 F

Reachability Matrix (Warshall‘s Algorithm):

Warshall‘s algorithm requires knowing which edges exist and which does not. It doesn‘t

need to know the lengths of the edges in the given directed graph. This information is

conveniently displayed by adjacency matrix for the graph, in which a ‗1‘ indicates the

existence of an edge and ‗0‘indicates non-existence.

A djac e nc y M atrix W a rs ha ll‘s A lgorit h m
A ll P a irs Rec ha bility  

M atrix

It begins with the adjacency matrix for the given graph, which is called A0, and

then updates the matrix ‗n‘ times, producing matrices called A1, A2, . . . . . , An and

then stops.

In warshall‘s algorithm the matrix Ai contains information about the existence of i–

paths. A one entry in the matrix Ai will correspond to the existence of i–paths and zero

entry will correspond to non-existence. Thus when the algorithm stops, the final matrix

An, contains the desired connectivity information.

A one entry indicates a pair of vertices, which are connected and zero entry indicates a

pair, which are not. This matrix is called a reachability matrix or path matrix for the

graph. It is also called the transitive closure of the original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall‘s algorithm is:

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1 [i, y]) ---- (1)



Example 1:

Use warshall‘s algorithm to calculate the reachability matrix for the graph:

4

1 4

5 6

7 11

1

2 3

7

We begin with the adjacency matrix of the graph ‗A0‘

1 0 1

0 3 0 0

1 0

A   = 2 0 0 1 1
0 0

1
4 1 1 0

The first step is to compute ‗A1‘matrix. To do so we will use the updating rule – (1).

Before doing so, we notice that only one entry in A0 must remain one in A1, since in

Boolean algebra 1 + (anything) = 1. Since these are only nine zero entries in A0, there

are only nine entries in A0 that need to be updated.

A1[1, 1] = A0[1, 1] ۷ (A0[1, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[1, 4] = A0[1, 4] ۷ (A0[1, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 1] = A0[2, 1] ۷ (A0[2, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 2] = A0[2, 2] ۷ (A0[2, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 1] = A0[3, 1] ۷ (A0[3, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[3, 2] = A0[3, 2] ۷ (A0[3, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 3] = A0[3, 3] ۷ (A0[3, 1] ٨ A0[1, 3]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 4] = A0[3, 4] ۷ (A0[3, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[4, 4] = A0[4, 4] ۷ (A0[4, 1] ٨ A0[1, 4]) = 0 ۷ (1 ٨ 0) = 0

1 1 0

1 1
0 0

=

10

2
A 0 0
1 3 0 0

1
4 1 1 0

Next, A2 must be calculated from A1; but again we need to update the 0 entries,

A2[1, 1] = A1[1, 1] ۷ (A1[1, 2] ٨ A1[2, 1]) = 0 ۷ (1 ٨ 0) = 0

A2[1, 4] = A1[1, 4] ۷ (A1[1, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

A2[2, 1] = A1[2, 1] ۷ (A1[2, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[2, 2] = A1[2, 2] ۷ (A1[2, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 1] = A1[3, 1] ۷ (A1[3, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 2] = A1[3, 2] ۷ (A1[3, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0



A2[3, 3] = A1[3, 3] ۷ (A1[3, 2] ٨ A1[2, 3]) = 0 ۷ (0 ٨ 1) = 0

A2[3, 4] = A1[3, 4] ۷ (A1[3, 2] ٨ A1[2, 4]) = 0 ۷ (0 ٨ 1) = 0

A2[4, 4] = A1[4, 4] ۷ (A1[4, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

10 1 1

1
0

1

1
0

1

=
2

A 0 0
2 3 0 0

4 1 1 1

This matrix has only seven 0 entries, and so to compute A3, we need to do only seven  
computations.

A3[1, 1] = A2[1, 1] ۷ (A2[1, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 1] = A2[2, 1] ۷ (A2[2, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 2] = A2[2, 2] ۷ (A2[2, 3] ٨ A2[3, 2]) = 0 ۷ (1 ٨ 0) = 0

A3[3, 1] = A2[3, 1] ۷ (A2[3, 3] ٨ A2[3, 1]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 2] = A2[3, 2] ۷ (A2[3, 3] ٨ A2[3, 2]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 3] = A2[3, 3] ۷ (A2[3, 3] ٨ A2[3, 3]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 4] = A2[3, 4] ۷ (A2[3, 3] ٨ A2[3, 4]) = 0 ۷ (0 ٨ 0) = 0

10 1 1 1

1 1
0 0

=
2

A 0 0
3 3 0 0

4 1 1 1 1

Once A3 is calculated, we use the update rule to calculate A4 and stop. This matrix is  
the reachability matrix for the graph.

A4[1, 1] = A3 [1, 1] ۷ (A3  [1, 4] ٨ A3  [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 1] = A3 [2, 1] ۷ (A3  [2, 4] ٨ A3  [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 2] = A3 [2, 2] ۷ (A3  [2, 4] ٨ A3  [4, 2]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[3, 1] = A3 [3, 1] ۷ (A3  [3, 4] ٨ A3  [4, 1]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0  = 0

A4[3, 2] = A3 [3, 2] ۷ (A3  [3, 4] ٨ A3  [4, 2]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 3] = A3 [3, 3] ۷ (A3  [3, 4] ٨ A3  [4, 3]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 4] = A3 [3, 4] ۷ (A3 [3, 4] ٨ A3 [4, 4]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

11

A     = 21
4 3 0

1

1
0

1

1
0

1

1
0

1
4 1 1 1

Note that according to the algorithm vertex 3 is not reachable from itself 1. This is  

because as can be seen in the graph, there is no path from vertex 3 back to itself.



Traversing a Graph

Many graph algorithms require one to systematically examine the nodes and edges of a  

graph G. There are two standard ways to do this. They are:

•

•

Breadth first traversal (BFT)  

Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing  

and the DFT will use a STACK.

During the execution of these algorithms, each node N of G will be in one of three  

states, called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or STACK, waiting to  

be processed.

3. STATUS = 3 (Processed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structure of graph. So, we

can compute a spanning tree in a graph. The computed spanning tree is not a minimum

spanning tree. The spanning trees obtained using depth first search are called depth

first spanning trees. The spanning trees obtained using breadth first search are called

Breadth first spanning trees.

Breadth first search and traversal:

The general idea behind a breadth first traversal beginning at a starting node A is as

follows. First we examine the starting node A. Then we examine all the neighbors of A.

Then we examine all the neighbors of neighbors of A. And so on. We need to keep track

of the neighbors of a node, and we need to guarantee that no node is processed more

than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be

processed, and by using a field STATUS that tells us the current status of any node.

The spanning trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.  

Initialize all nodes to the ready state (STATUS = 1).

1. Put the starting node A in QUEUE and change its status to the waiting  

state (STATUS = 2).

2. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change the  

status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in the

ready state (STATUS = 1), and change their status to the waiting

state (STATUS = 2).

3. Exit.



Depth first search and traversal:

Depth first search of undirected graph proceeds as follows: First we examine the

starting node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth

first search from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent

vertices have been visited, we back up to the last vertex visited, which has an unvisited

vertex 'W' adjacent to it and initiate a depth first search from W. The search terminates

when no unvisited vertex can be reached from any of the visited ones.

This algorithm is similar to the inorder traversal of binary tree. DFT algorithm is similar

to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to

tell us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

5. Initialize all nodes to the ready state (STATUS = 1).

6. Push the starting node A into STACK and change its status to the waiting state  
(STATUS = 2).

7. Repeat the following steps until STACK is empty:

Pop the top node N from STACK. Process N and change the status of N to  

the processed state (STATUS = 3).

Push all the neighbors of N that are in the ready state (STATUS = 1), and  

change their status to the waiting state (STATUS = 2).

8. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first  
order and depth first order.

A

F C B

D E G

J K A Gra ph G

Node Adjacency List

A F, C, B

B A, C, G

C A, B, D, E, F, G

D C, F, E, J

E C, D, G, J, K

F A, C, D

G B, C, E, K

J D, E, K

K E, G, J

Adjacency list for graph G



Curren

t  

Node

QUEUE Processed Nodes
Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1

A 2 1 1 1 1 1 1 1 1

A F C B A 3 2 2 1 1 2 1 1 1

F C B D A F 3 2 2 2 1 3 1 1 1

C B D E G A F C 3 2 3 2 2 3 2 1 1

B D E G A F C B 3 3 3 2 2 3 2 1 1

D E G J A F C B D 3 3 3 3 2 3 2 2 1

E G J K A F C B D E 3 3 3 3 3 3 2 2 2

G J K A F C B D E G 3 3 3 3 3 3 3 2 2

J K A F C B D E G J 3 3 3 3 3 3 3 3 2

K EMPTY A F C B D E G J K 3 3 3 3 3 3 3 3 3

Breadth-first search and traversal:

The steps involved in breadth first traversal are as follows:

For the above graph the breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Curren

t  

Node

Stack Processed Nodes
Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1

A 2 1 1 1 1 1 1 1 1

A B C F A 3 2 2 1 1 2 1 1 1

F B C D A F 3 2 2 2 1 3 1 1 1

D B C E J A F D 3 2 2 3 2 3 1 2 1

J B C E K A F D J 3 2 2 3 2 3 1 3 2

K B C E G A F D J K 3 2 2 3 2 3 2 3 3

G B C E A F D J K G 3 2 2 3 2 3 3 3 3

E B C A F D J K G E 3 2 2 3 3 3 3 3 3

C B A F D J K G E C 3 2 3 3 3 3 3 3 3

B EMPTY A F D J K G E C B 3 3 3 3 3 3 3 3 3

For the above graph the depth first traversal sequence is: A F D J K G E C B.



Example 2:

Traverse the graph shown below in breadth first order, depth first order and construct  

the breadth first and depth first spanning trees.

A H I

B C G

J K
D

E

F L M
T h e G r a p h G

Node Adjacency List
A F, B, C, G

B A

C A, G

D E, F

E G, D, F

F A, E, D

G A, L, E, H, J, C

H G, I

I H
J G, L, K, M

K J

L G, J, M

TheMadjacencyL, listJ for the graph G

If the depth first traversal is initiated from vertex A, then the vertices of graph G are

visited in the order: A F E G L J K M H I C D B. The depth first spanning tree is shown

in the figure given below:

A

F B

E

G D

L H C

J I

K M

Depth first Traversal

If the breadth first traversal is initiated from vertex A, then the vertices of graph G are

visited in the order: A F B C G E D L H J M I K. The breadth first spanning tree is

shown in the figure given below:

A

F B C G

E D L H J

M I K

Breadth first traversal



Example 3:

Traverse the graph shown below in breadth first order, depth first order and construct  

the breadth first and depth first spanning trees.

1

2 3

4 5 6 7

8

Graph G

H e a d N o d e s

1 2 3

1 4 5

1 6 7

7.4.4.

7.4.5.

4 2 8

5 2 8

6

7

3 8

3 8

8 4 5 6 7

A dj a c e nc y lis t fo r g r a p h G

Depth first search and traversal:

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in  
the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

1

2 3

4 5 6 7

8

Depth First Spanning Tree



Breadth first search and traversal:

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in  

the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows:

1

2 3

4 5 6 7

8

Breadth First Spanning Tree

EXCERCISES

6. Show that the sum of degrees of all vertices in an undirected graph is twice the  

number of edges.

7. Show that the number of vertices of odd degree in a finite graph is even.

8. How many edges are contained in a complete graph of ―n‖vertices.

9. Show that the number of spanning trees in a complete graph of ―n‖vertices is 2n-1

– 1.

10. Prove that the edges explored by a breadth first or depth first traversal of a  
connected graph from a tree.

11. Explain how existence of a cycle in an undirected graph may be detected by  

traversing the graph in a depth first manner.

12. Write a ―C‖ function to generate the incidence matrix of a graph from its  

adjacency matrix.

13. Give an example of a connected directed graph so that a depth first traversal of  
that graph yields a forest and not a spanning tree of the graph.

14. Rewrite the algorithms ―BFSearch‖and ―DFSearch‖so that it works on adjacency  

matrix representation of graphs.

15. Write a ―C‖function to find out whether there is a path between any two vertices  

in a graph (i.e. to compute the transitive closure matrix of a graph)

16. Write a ―C‖ function to delete an existing edge from a graph represented by an  

adjacency list.

17. Construct a weighted graph for which the minimal spanning trees produced by  

Kruskal‘s algorithm and Prim‘s algorithm are different.



5. Describe the algorithm to find a minimum spanning tree T of a weighted graph G.  

Find the minimum spanning tree T of the graph shown below.

6 5

A B C

1 8

4 2

D E

3

5. For the graph given below find the following:
Linked representation of the graph.  

Adjacency list.

Depth first spanning tree.  

Breadth first spanning tree.

Minimal spanning tree using Kruskal‘s and Prim‘s algorithms.

8 6

1 1 5 7

2 4 6 2 79

3 3 8 10

4 10 9 5

3.6. For the graph given below find the following:
Linked representation of the graph.  
Adjacency list.
Depth first spanning tree.  
Breadth first spanning tree.
Minimal spanning tree using Kruskal‘s and Prim‘s algorithms.

1
4

2 3 7 8

6

• For the graph given below find the following:
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Multiple Choice Questions

1. How can the graphs be represented?
A. Adjacency matrix
B. Adjacency list

[ D ]

C. Incidence matrix
D. All of the above

2. The depth-first traversal in graph is analogous to tree traversal: [ C ]

A. In-order
B. Post-order

C. Pre-order
D. Level order

3. The children of a same parent node are called as: [ C ]
A. adjacent node
B. non-leaf node

C. Sibblings
D. leaf node

4. Complete graphs with n nodes will have edges. [ C ]

C. n(n-1)/2
D. (n – 1)/2

A. n - 1
B. n/2

5. A graph with no cycle is called as:
A. Sub-graph
B. Directed graph

[ C ]

C. Acyclic graph
D. none of the above

6. The maximum number of nodes at any level is: [ B ]
A. n

B. 2n

C. n + 1

D. 2n

A
20

B
Node Adjacency List

A B C D

B A D E

C A D F

D A B C E F G

E B D G

F C D G

G F D E

1523 1 4

C
36

D
9

E

25 16
28

3

F G
17

FIGURE 1 and its adjacency list

7. For the figure 1 shown above, the depth first spanning tree visiting  

sequence is:
[ B ]

A. A B C D E F G
B. A B D C F G E

C. A B C D E F G
D. none of the above

8. For the figure 1 shown above, the breadth first spanning tree visiting  
sequence is:

[ B ]

A. A B D C F G E
B. A B C D E F G

C. A B C D E F G
D. none of the above

9. Which is the correct order for Kruskal‘s minimum spanning tree algorithm  

to add edges to the minimum spanning tree for the figure 1 shown  

above:

• (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)
• (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)
• both A and B
• none of the above

[ B ]

10. For the figure 1 shown above, the cost of the minimal spanning tree is: [ A ]

A. 57
B. 68

C. 48
D. 32



11. A simple graph has no loops. What other property must a simple graph  

have?
[ D ]

A. It must be directed.
B. It must be undirected.

C. It must have at least one vertex.
D. It must have no multiple edges.

12. Suppose you have a directed graph representing all the flights that an  

airline flies. What algorithm might be used to find the best sequence of  

connections from one city to another?

[ D ]

A. Breadth first search.
B. Depth first search.

C. A cycle-finding algorithm.
D. A shortest-path algorithm.

13. If G is an directed graph with 20 vertices, how many boolean values will  

be needed to represent G using an adjacency matrix?
[ D ]

A. 20
B. 40

14. Which graph

C. 200
D. 400

representation allows the most efficient determination of [ B ]

the existence of a particular edge in a graph?

A. An adjacency matrix.
B. Edge lists.

C. Incidence matrix
D. none of the above

15. What graph traversal algorithm uses a queue to keep track of vertices  

which need to be processed?
[ A ]

A. Breadth-first search.
B. Depth-first search.

C Level order search
D. none of the above

16. What graph traversal algorithm uses a stack to keep track of vertices  

which need to be processed?
[ B ]

A. Breadth-first search.
B. Depth-first search.

C Level order search
D. none of the above

17. What is the expected number of operations needed to loop through all  

the edges terminating at a particular vertex given an adjacency matrix  

representation of the graph? (Assume n vertices are in the graph and m  

edges terminate at the desired node.)

[ D ]

A. O(m)
B. O(n)

C. O(m²)
D. O(n²)

18. What is the expected number of operations needed to loop through all  

the edges terminating at a particular vertex given an adjacency list  

representation of the graph? (Assume n vertices are in the graph and m  

edges terminate at the desired node.)

[ A ]

A. O(m)
B. O(n)

C. O(m²)
D. O(n²)

19.
3

[ B ]

A D

2 1 5 5

B 3 G 4 E FIGURE 3

1 4 6 1

3
C F

For the figure 3, starting at vertex A, which is a correct order for Prim‘s  

minimum spanning tree algorithm to add edges to the minimum  

spanning tree?



3. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)
4. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
5. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)
6. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

20. For the figure 3, which is a correct order for Kruskal‘s minimum spanning [ C ] tree  

algorithm to add edges to the minimum spanning tree?

4. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)
5. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
6. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)
7. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

21. Which algorithm does not construct an in-tree as part of its processing?
A. Dijkstra‘s Shortest Path Algorithm
B. Prim‘s Minimum Spanning Tree Algorithm
C. Kruskal‘s Minimum Spanning Tree Algorithm
D. The Depth-First Search Trace Algorithm

22. The worst-case running time of Kruskal‘s minimum-cost spanning tree  

algorithm on a graph with n vertices and m edges is:

[ ]

[ ]

A.
B.

C.
D.

23. An adjacency matrix representation of a graph cannot contain  

information of:
[ D ]

A. Nodes
B. Edges

C. Direction of edges
D. Parallel edges

A Node Adjacency List

A D

B A C

C G D F

D ----

E C D

F E A

G B

B D

G F

C E

FIGURE 4 and its adjacency list

24. For the figure 4, which edge does not occur in the depth first spanning  

tree resulting from depth first search starting at node B:
[ B ]

A. F → E
B. E → C

C. C → G
D. C → F

25. The set of all edges generated by DFS tree starting at node B is: [ A ]

A. B A D C G F E
B. A D

C. B A C D G F E
D. Cannot be generated

26. The set of all edges generated by BFS tree starting at node B is: [ C ]

A. B A D C G F E
B. A D

C. B A C D G F E
D. Cannot be generated
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Elementary Data Structures 
 

Stacks, Queues, Lists, and Related Structures 
 

 

 

Stacks, lists and queues are primitive data structures fundamental to 
implementing any program requiring data storage and retrieval. The 
following tables offer specific information on each type of data 
structure. The rest of the web page offers information about 
implementing and applying these data structures. 
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ADT Mathematical Model Operations 

Stack 

 

Push(S,Data) 
Pop(S) 
Makenull(S) 
Empty(S) 
Top(S) 

The mathematical model of a stack is LIFO (last in, first 
out). Data placed in the stack is accessed through one 
path. The next available data is the last data to be placed 
in the stack. In other words, the "newest" data is 
withdrawn.  

 
The standard operations on a stack are as follows: 

PUSH(S, Data) : Put 'Data' in stack 'S' 
POP(S) : Withdraw next available data 

from stack 'S' 
MAKENULL(S) : Clear stack 'S' of all data 
EMPTY(S) : Returns boolean value 'True' if 

stack 'S' is empty; returns 'False' 
otherwise 

TOP(S) : Views the next available data on 
stack 'S'. This operation is 
redundant since one can simply 
POP(S), view the data, then 
PUSH(S,Data) 

All operations can be 
implemented in O(1) 
time. 
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ADT Mathematical Model Operations 

Queue 
 

Enqueue(Q) 
Dequeue(Q) 

Front(Q) 
Rear(Q) 

Makenull(Q) 
The mathematical model of a queue is FIFO(first in, 
first put). Data placed in the queue goes through 
one path, while data withdrawn goes through 
another path at the "opposite" end of the queue. 
The next available data is the first data placed in 
the queue. In other words, the "oldest" data is 
withdrawn.  

The standard operation on a queue are as follows: 

ENQUEUE(Q, Data) : Put 'Data' in the rear 
path of queue 'Q' 

DEQUEUE(Q) : Withdraw next available 
data from front path of 
queue 'Q' 

FRONT(Q) : Views the next available 
data on queue 'Q' 

REAR(Q) : Views the last data 
entered on queue 'Q' 

MAKENULL(Q) : Clear queue 'Q' of all 
data. 

All operations can be 
implemented in O(1) time.  
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ADT Mathematical Model Operations 

Deque 
 

Inject(D,Data) 
Eject(D) 
Dequeue(D) 
Enqueue(D,Data) 
Front(D) 
Rear(D) 
MakeNull(D) 

The mathematical model of a deque is similar to a queue. 
However, a deque is a "double-ended" queue. The model 
allows data to be entered and withdrawn from the front 
and rear of the data structure.  

The standard operations on a deque are as follows: 

INJECT(D, Data) : Put 'Data' in front path of 
deque 'D' 

EJECT(D) : Withdraw next available 
data from rear path of 
deque 'D' 

ENQUEUE(D, Data) : Put 'Data' in rear path of 
deque 'D' 

DEQUEUE(D) : Withdraw next available 
data from front path of 
deque 'D' 

FRONT(D) : Views the next available 
data from front path of 
deque 'D' 

REAR(D) : Views the next available 
data from rear path of 
deque 'D' 

MAKENULL(D) : Clear deque 'D' of all data. 
All operations can be 
implemented in O(1) time.  
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ADT Mathematical model Operations 

List [x1 ,x2 ,...,xn] 
Concatenate(L1, L2) 
Access(L, i) 
Sublist(L, [i...j]) 

The mathematical model of a list is a string of data. 
The model allows data to be added or deleted 
anywhere in the list. 
 
 
 
The standard operations on s list are as follows: 
CONCATENATE(L1, 
L2) : 

Two lists L1, L2 are 
joined as follows,  
L1 = [x1, x2, x3, ..., xn] 
L2= [y1, y2, y3,...,ym] 

L = [x1, x2, x3,...,xn, y1, 
y2, ...,ym]  

ACCESS(L, i) : Returns data xi 
SUBLIST(L, [i...j]) : Returns [xi, xi+1, ...,xj] 

Variations of this are 
sublist(L,[i...])which 
returns [xi, xi+1, ...xn], 
and SUBLIST(L,[...i]), 
which returns [x1, 
x2,...,xi]  
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CONCATENATE, ACCESS, and SUBLIST are 
called "ATOMIC" operations. Using these three 
operations we can make other operations. 

Examples: 

 
INSERT_AFTER(L, x, i) : Inserts data 'x' after 
member xi in list 'L'. 
This can be inplemented by the following 
operations: 
CONCATENATE(SUBLIST(L,[...i])), 
CONCANTENATE([x], SUBLIST(l,[I+1...])) 
 
DELETE(L, i) :Removes xi from list 'L'. 
This can be implemented as the following 
operations: 
CONCATENATE(SUBLIST(L[...i-1])), 
SUBLIST(L, [i+1...]))  

The atomic operations may be used to describe the 
standard stack, queue and deque operations. 
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Implementations 

The ADTs can be implemented by various data 
structures. 

1. Tables/Arrays: 

A static array can be used to implement the 
data structures. Consider, for example, a queue 
implemented as an array. 

 
As data is added to the rear of the queue, the cell 
labelled 'rear' (the cell containing the last 
enqueued data) is incremented to the right. If data 
is dequeued, the cell labelled 'front' (the cell 
containing the first enqueued data) is also 
incremented to the right. Subsequently, the data 
could end up flanked by empty cells. 
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If the cell labelled 'rear' is the last cell in the array, 
AND there are empty cells at the beginning of the 
array (due to previous dequeues) then 'rear' will 
wrap to the beginning of the array on the next 
enqueue. This will result in data at the beginning 
and end of the array, with empty cells in the 
middle. 

 
An ANCHORED LIST prevents this movement of 
data in the array. Data is always left skewed. In 
our queue example, if data is dequeued then the 
whole array must be shifted one cell to the left. 

 
Anchored lists are more appropiate for stacks, 
where the non-anchored end of the list 
represents the top of the stack.  
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Two stacks can be anchored at opposite ends of 
an array. As the stacks fill with data, they will 
"grow" towards each other. The above figure 
illustrates this concept. By filling the array 
with the two stacks anchored at opposite ends, 
the user can have the utility of two stacks while 
using the storage of one array. 

2. Linked Lists: 

A series of structures connected with pointers can 
be used to implement the data structures. Each 
structure contains data with one or more pointers 
to neighbouring structures. 

 
There are several variants of the linked list 
structure: 

Endogenous / Exogenous lists: 

- endogenous lists have the data stored in the 
structure's KEY. The KEY is data stored within 
the structure.  
- exogenous lists have the data stored outside the 
structure. Instead of a KEY, the structure has a 
pointer to the data in memory. Exogenous lists do 
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not require data to be moved when individual cells 
are moved in a list; only the pointers to data must 
be changed. This can save considerable cost when 
dealing with large data in each cell. Another 
benefit of exogenous lists is many cells can point to 
the same data. Again, this may be useful depending 
on the application.  

Here are example declarations of endogenous and 
exogenous structures: 

struct endogenous { data_type key,  
struct endogenous * next 
}; 

struct exogenous { data_type * data,  
struct exogenous * next 
}; 

 
Circular / Non-circular lists: 

- a circular list has the last cell in the array 
pointing to the first cell in the array. 
Specifically, the last cell's 'next' pointer 
references the first cell. 
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Representation in C : last_cell.next = 
&first_cell 

- the last cell in a non-circular list points to 
nothing. 

Representation in C : last_cell.next = NULL 

Circular lists are useful for representing 
polygons (for example) because one can trace a 
path continously back to where one started. 
This is useful for representing a polygon 
because there is essentially no starting or 
ending point. Thus, we would like an 
implementation to illustrate this. 

 
 

With/Without a Header/Trailer: 

- a header node is a dummy first node in the 
list. It is not part of the data, but rather 
contains some information about the list (eg. 
size). 
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- a trailer node is at the end of a list (its 
contents marks the end). 

 
 

 

 

Doubly Linked List: 

-each node in a doubly linked list is a structure 
with two pointers to link with neighbouring 
nodes. One pointer points to the next node in 
the list, and the other pointer points to the 
previous node in the array. This 
implementation is useful for deleting nodes. 
The algorithm can be performed in O(1) time. 
Deleting nodes in a singly linked list can be 
done in OMEGA(n) time. Therefore, doubly 
linked lists can be very useful in applications 
requiring a lot of deletions. The pseudocode for 
the delete algorithm is as follows: 
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p -> prev -> next = p -> next  

p-> next -> prev = p -> prev  

 

3. Utility of implementations: 

-Stacks can easily be implemented as a linked 
list. One needs a pointer to the top of the stack 
(which is the front of the list). 
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-Queues can easily be implemented as a linked 
list as well. One needs a pointer to the front of 
the queue (which is the front of the list); as 
well, one needs a pointer to the rear of the 
queue (which is the end of the list). 

 
It is better, however, to implement a queue as a 
circular list. This circular list has a pointer to 
the list pointing at the rear rather than the 
front of the list. 

 
-Concatenating sublists can easily be done with 
a linked list. Conversely, concatenating sublists 
with an array implementation is expensive. 
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-Referencing sublists with a linked list 
implementation is expensive. Conversely, 
sublists can be referenced easily with an array 
implementation. 

 

Applications 
 

1. Polynomial ADT: 
A polynomial can be represented with 
primitive data structures. For example, a 
polynomial represented as akxk ak-1xk-1 + ... + a0 
can be represented as a linked list. Each node 
is a structure with two values: ai and i. Thus, 
the length of the list will be k. The first node 
will have (ak, k), the second node will have (ak-1, 
k-1) etc. The last node will be (a0, 0). 

The polynomial 3x9 + 7x3 + 5 can be 
represented in a list as follows: (3,9) --> (7,3) --
> (5,0) where each pair of integers represent a 
node, and the arrow represents a link to its 
neighbouring node. 

Derivatives of polynomials can be easily 
computed by proceeding node by node. In our 
previous example the list after computing the 
derivative would represented as follows: (27,8) 
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--> (21,2). The specific polynomial ADT will 
define various operations, such as 
multiplication, addition, subtraction, 
derivative, integration etc. A polynomial ADT 
can be useful for symbolic computation as well. 

 

2. Large Integer ADT: 
Large integers can also be implemented with 
primitive data structures. To conform to our 
previous example, consider a large integer 
represented as a linked list. If we represent the 
integer as successive powers of 10, where the 
power of 10 increments by 3 and the coefficent 
is a three digit number, we can make 
computations on such numbers easier. For 
example, we can represent a very large number 
as follows: 

 
513(106) + 899(103) + 722(100).  
 

Using this notation, the number can be 
represented as follows: 
 

(513) --> (899) --> (722). 
 



 17

The first number represents the coefficient of 
the 106 term, the next number represents the 
coefficient of the 103 term and so on. The 
arrows represent links to adjacent nodes. 
The specific ADT will define operations on this 
representation, such as addition, subtraction, 
multiplication, division, comparison, copy etc. 

3. Window Manager ADT: 
A window interface can be represented by lists. 
Consider an environment with many windows. 
The fist node in the list could represent the 
current active window. Subsequent windows 
are further along the list. In other words, the 
nth window corresponds to the nth node in the 
list. The ADT can define several functions, 
such as Find_first_window which would bring 
a window clicked upon to the front of the list 
(make it active). Other functions could perform 
window deletion or creation. 
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4. Management of free space: 
 

When memory is requested, a list of available 
blocks of memory might be useful. Again, a list 
could represent blocks in memory available to 

the user, with nodes containing pointers to 
these available blocks. The list can be used like 

a stack (LIFO). The last freed memory 
becomes the next available to the user. Such 
lists are called 'free space lists' or 'available 
space lists'. Since addition and deletion of 
nodes is at one end, these lists behave like 

stacks. All operations on free space lists can be 
done in O(1) time. 
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Stacks 
 

1. Stack based languages: 
Expressions can be evaluated using a stack. 
Given an expression in a high-level language 
(for example, (a + b) * c) the compiler will 
transform this expression to postfix form. The 
postfix form of the above example is ab + c *, 
where a and b are operands, + and * are 
operators, and the expression is scanned left to 
right. The expression is pushed on the stack 
and evaluated as it is popped. The following 
algorithm illustrates the process: 

makenull(S) 
y <- POP(S) 
read(char) 
if (char) is operand{ 
PUSH (char, S) 
} 
if (char) is operator{ 
x <- POP(S) 
z <- evaluate "y char x" 
PUSH (z, S) 
}  

In the end the stack will hold one element (the 
result). 
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2. Text Editor: 
A text editor can be implemented with a stack. 
Characters are pushed on a stack as the user 
enters text. Commands to delete one character 
or a command to delete a series of characters 
(for example, a sentence or a word) would also 
push a character on a stack. However, the 
character would be a unique identifier to know 
how many characters to delete. For example, 
an identifier to delete one character would pop 
the stack once. An identifier to delete a 
sentence would pop all characters until the 
stack is empty or a period is encountered. 

3. Postscript: 
Postscript is a full-fledged interpreted 
computer language in which all operations are 
done by accessing a stack. It is the language of 
choice for laser printers. For example, the 
Postscript section of code 
1 2 3 4 5 6 ADD MUL SUB 7 ADD MUL ADD 
represents: 
1 2 3 4 5 6 + * - 7 + * + 
which in turn represents: 
1 + ( 2 * ( ( 3 - ( 4 * ( 5 + 6 ) ) ) + ( 7 ) ) ) 
Very much as in the stack-based language 
example, the expression can be evaluated from 
left to right. Expressions written in the form 
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given above are called postfix expressions. 
Their easy evaluation with the help of a stack 
makes them natural candidates for the 
organization of expressions by compilers. 

 

4. Scratch pad: 
Stacks are used to write down instructions that 
you can not act on immediately. For example, 
future work to be done by the program, 
information that may be useful later, and so 
forth (just as with a scratch pad). An example 
of this is the rat-in-maze problem (see below). 
A stack can be used to solve the problem of 
traversing a maze. One must keep track of 
previously explored routes, or else an infinite 
loop could occur. For example, with no 
previous knowledge of exploring a specific 
route unsuccessfully, one can enter a path, find 
no solution to the maze, exit the path through 
the same route as entrance, then enter the same 
unsuccessful path all over again. This problem 
can be solved with the help of a stack. 
If we consider each step through a maze a cell, 
the following algorithm will traverse a maze 
successfully with the help of a stack 'S': 
(For all cells) 
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Visited(cell) <- false 
S <- Start 
Visited(start) <-true 
While not EMPTY(S) do{ 
if TOP(S) has an empty adjacent square then 
<Q< (TOP(S))="EMPTY" SQUARE< DD>  
VISITED(q) <- true  
if q = 'TARGET CELL' then stop  
PUSH(q, S) /*S has your path*/ 
else POP(S) 
} 

  

5. Recursion: 
Stacks are used in recursions. Every recursive 
program can be rewritten iteratively using a 
stack. One related problem is the knapsack 
problem: 
Consider a knapsack with volume represented 
as a fixed integer. One is given a series of items 
of varying size (the size of the objects is 
represented as an integer). The knapsack 
problem is to find a combination of items that 
will fit exactly into the knapsack (i.e. no unused 
space). The function call is written as 
'knapsack(target: , candidate: )' where 'target' 
is the amount of space left in the sack, and 
'candidate' is the reference to the item being 
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considered to be added. The function returns a 
boolean result; 'true' if target can be filled 
exactly using a subest of the items numbered 
"candidate, ..., n". Here 'n' is the total number 
of items. Define size[.] as an array of sizes of 
the items. The following is a recursive solution 
to the problem:  
 
knapsack(target,candidate) 
if target = 0 then return "true" 
if candidate > n or target < 0 then return 
"false" 
if knapsack(target - size(candidate) , candidate 
+ 1) then 

return "true" 
else return knapsack(target, candidate + 1) 

A knapsack of size 26 can be filled with items 
of size 15 and 11. 
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UNIT-II 

 

Divide and Conquer 
 

 

General Method 

 

Divide and conquer is a design strategy which is well known to breaking down 

efficiency barriers. When the method applies, it often leads to a large improvement in 

time complexity. For example, from O (n2) to O (n log n) to sort the elements. 

 

Divide and conquer strategy is as follows: divide the problem instance into two or 

more smaller instances of the same problem, solve the smaller instances recursively, 

and assemble the solutions to form a solution of the original instance. The recursion 

stops when an instance is reached which is too small to divide. When dividing the 

instance, one can either use whatever division comes most easily to hand or invest 

time in making the division carefully so that the assembly is simplified. 

 

Divide and conquer algorithm consists of two parts: 

 

Divide : Divide the problem into a number of sub problems. The sub problems 

are solved recursively. 
Conquer  : The solution to the original problem is then formed from the solutions 

to the sub problems (patching together the answers). 

 

Traditionally, routines in which the text contains at least two recursive calls are called 

divide and conquer algorithms, while routines whose text contains only one recursive 

call are not. Divide–and–conquer is a very powerful use of recursion. 

 

Control Abstraction of Divide and Conquer 

 

A control abstraction is a procedure whose flow of control is clear but whose primary 

operations are specified by other procedures whose precise meanings are left 

undefined. The control abstraction for divide and conquer technique is DANDC(P), 

where P is the problem to be solved. 
 

DANDC (P) 

{ 

if SMALL (P) then return S (p); 

else 
{ 

divide p into smaller instances p1, p2, …. Pk, k  1; 
apply DANDC to each of these sub problems; 
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk)); 

} 

} 
 

SMALL (P) is a Boolean valued function which determines whether the input size is 

small enough so that the answer can be computed without splitting. If this is so 

function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These 

sub problems p1, p2, . . . , pk are solved by recursive application of DANDC. 
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 

If the sizes of the two sub problems are approximately equal then the computing 
time of DANDC is: 

 

  g (n) 
T  (n) =  

2 T(n/2) f (n) 

n small 

otherwise 
 

Where, T (n) is the time for DANDC on ‘n’ inputs 

g (n) is the time to complete the answer directly for small inputs and 

f (n) is the time for Divide and Combine 

 

Binary Search 

 
If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . 

When we are given a element ‘x’, binary search is used to find the corresponding 
element from the list. In case ‘x’ is present, we have to determine a value ‘j’ such 
that a[j] = x (successful search). If ‘x’ is not in the list then j is to set to zero (un 
successful search). 

 

In Binary search we jump into the middle of the file, where we find key a[mid], and 

compare  ‘x’ with  a[mid]. If x  = a[mid]  then the desired record has been  found.    

If x < a[mid] then ‘x’ must be in that portion of the file that precedes a[mid], if there 

at all. Similarly, if a[mid] > x, then further search is only necessary in that past of 

the file which follows a[mid]. If we use recursive procedure of finding the middle key 

a[mid] of the un-searched portion of a file, then every un-successful comparison of 

‘x’ with a[mid] will eliminate roughly half the un-searched portion from consideration. 

 
Since the array size is roughly halved often each comparison between ‘x’  and  
a[mid], and since an array of length ‘n’ can be halved only about log2n times before 

reaching a trivial length, the worst case complexity of Binary search is about log2n 
 

Algorithm Algorithm 

BINSRCH (a, n, x) 
// array a(1 : n) of elements in increasing order, n  0, 

// determine whether ‘x’ is present, and if so, set j such that x = a(j) 

// else return j 

 

{ 

low :=1 ; high :=n ; 

while (low < high) do 
{ 

mid :=|(low + high)/2| 

if (x < a [mid]) then high:=mid – 1; 

else if (x > a [mid]) then low:= mid + 1 
else return mid; 

} 

return 0; 

} 
 

low and high are integer variables such that each time through the loop either ‘x’ is 

found or low is increased by at least one or high is decreased by at least one. Thus 

we have two sequences of integers approaching each other and eventually low will 

become greater than high causing termination in a finite number of steps if ‘x’ is not 

present. 
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Example for Binary Search 

 

Let us illustrate binary search on the following 9 elements: 

 

Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

 

The number of comparisons required for searching different elements is as follows: 

 

1. Searching for x = 101 

 

 

 

 

Number of comparisons = 4 

 

2. Searching for x = 82 

 

 

 
Number of comparisons = 3 

 

3. Searching for x = 42 

 
 

 

 
Number of comparisons = 4 

 

4. Searching for x = -14 

 
 

 
Number of comparisons = 3 

 

found 

 

 
 

low 

1 

high 

9 

mid 

5 
6 9 7 

8 9 8 
found 

 

 

 

low 

1 

high 

9 

mid 

5 
6 9 7 

6 6 6 

7 6 not found 

 

 

 

 

low 
1 

high 
9 

mid 
5 

1 4 2 

1 1 1 

2 1 not found 

 

Continuing in this manner the number of element comparisons needed to find each of 

nine elements is: 

 
Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

Comparisons 3 2 3 4 1 3 2 3 4 

 

No element requires more than 4 comparisons to be found. Summing the 

comparisons needed to find all nine items and dividing by 9, yielding 25/9 or 

approximately 2.77 comparisons per successful search on the average. 

 

There are ten possible ways that an un-successful search may terminate depending 
upon the value of x. 

 
 

 

low 

1 

high 

9 

mid 

5 
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If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or 

a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that ‘x’ 

is not present. For all of the remaining possibilities BINSRCH requires 4 element 

comparisons. Thus the average number of element comparisons for an unsuccessful 

search is: 

 

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4 

 

The time complexity for a successful search is O(log n) and for an unsuccessful 

search is Θ(log n). 
 

Successful  searches un-successful searches 

Θ(1), Θ(log  n), Θ(log  n) Θ(log n) 

Best average worst best, average and worst 

 

Analysis for worst case 

 

Let T (n) be the time complexity of Binary search 

The algorithm sets mid to [n+1 / 2] 

Therefore, 

T(0) = 0  

T(n) = 1 if x = a [mid] 

 = 1 + T([(n + 1) / 2] – 1) if x < a [mid] 

 = 1 + T(n – [(n + 1)/2]) if x > a [mid] 

 
Let us restrict ‘n’ to values of the form n = 2K – 1, where ‘k’ is a non-negative 

integer. The array always breaks symmetrically into two equal pieces plus middle 

element. 

 

2K – 1 - 1  
2K – 1 - 1 

   

 2K 1  

 

Algebraically this is 
 n  1

    2
K
  1  1  =  2K – 1 for K > 1 

 

 
 

Giving, 

     

 2   2  

 
T(0) = 0 

T(2k – 1) = 1 if x = a [mid] 

= 1 + T(2K - 1 – 1) if x < a [mid] 

= 1 + T(2k - 1 – 1) if x > a [mid] 

 

In the worst case the test x = a[mid] always fails, so 

w(0) = 0 

w(2k – 1) = 1 + w(2k - 1 – 1) 

 

 

 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 5  

This is now solved by repeated substitution: 
 

w(2k – 1) = 1 + w(2k - 1 – 1) 

= 1 + [1 + w(2k - 2 –1)] 

= 1 + [1 + [1 + w(2k - 3 –1)]] 

= . . . . . . . . 

= . . . . . . . . 

= i + w(2k - i – 1) 

 
For i < k, letting i = k gives w(2k –1) = K + w(0) = k 

But as 2K – 1 = n, so K = log2(n + 1), so 

w(n) = log2(n + 1) = O(log n) 
 

for n = 2K–1, concludes this analysis of binary search. 

 

Although it might seem that the restriction of values of ‘n’ of the form 2K–1 weakens 
the result. In practice this does not matter very much, w(n) is a  monotonic 
increasing function of ‘n’, and hence the formula given is a good approximation even 
when ‘n’ is not of the form 2K–1. 

 

External and Internal path length: 

 

The lines connecting nodes to their non-empty sub trees are called edges. A non- 

empty binary tree with n nodes has n–1 edges. The size of the tree is the number of 

nodes it contains. 

 

When drawing binary trees, it is often convenient to represent the empty sub trees 

explicitly, so that they can be seen. For example: 
 

The tree given above in which the empty sub trees appear as square nodes is as 

follows: 

 

The square nodes are called as external nodes E(T). The square node version is 

sometimes called an extended binary tree. The round nodes are called internal nodes 

I(T). A binary tree with n internal nodes has n+1 external nodes. 

 

The height h(x) of node ‘x’ is the number of edges on the longest path leading down 

from ‘x’ in the extended tree. For example, the following tree has heights written 

inside its nodes: 
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The depth d(x) of node ‘x’ is the number of edges on path from the root to ‘x’. It is 

the number of internal nodes on this path, excluding ‘x’ itself. For example, the 

following tree has depths written inside its nodes: 
 

The internal path length I(T) is the sum of the depths of the internal nodes of ‘T’: 

I(T) =  
x  I(T ) 

 
d(x) 

 

The external path length E(T) is the sum of the depths of the external nodes: 

E(T) =  
x  E(T ) 

 
d(x) 

 

For example, the tree above has I(T) = 4 and E(T) = 12. 

 

A binary tree T with ‘n’ internal nodes, will have I(T) + 2n = E(T) external nodes. 

A binary tree corresponding to binary search when n = 16 is 

External square nodes, which lead for unsuccessful search. 

 

Let CN be the average number of comparisons in a successful search. 

C 'N be the average number of comparison in an un successful search. 

 

 

  

   

  

 

  

    

  

 

 12 

  10 14 

     11 13 15 

  2 3       16 

Represents internal nodes which lead for successful search  

16 
 

15 

14 13 12 11 10 
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Then we have, 

 

CN  1  
internal pathlengthof tree 

N 
 

C'N  
External path length of tree 

N  1 
 

 
CN   

1  
     C'N  1 

 N 
 

External path length is always 2N more than the internal path length. 

 

Merge Sort 

 

Merge sort algorithm is a classic example of divide and conquer. To sort an array, 

recursively, sort its left and right halves separately and then merge them. The time 

complexity of merge mort in the best case, worst case and average case is O(n log n) 

and the number of comparisons used is nearly optimal. 

 

This strategy is so simple, and so efficient but the problem here is that there seems 

to be no easy way to merge two adjacent sorted arrays together in place (The result 

must be build up in a separate array). 

 

The fundamental operation in this algorithm is merging two sorted lists. Because the 

lists are sorted, this can be done in one pass through the input, if the output is put in 

a third list. 

 

The basic merging algorithm takes two input arrays ‘a’ and ’b’, an output array ‘c’, 

and three counters, a ptr, b ptr and c ptr, which are initially set to the beginning of 

their respective arrays. The smaller of a[a ptr] and b[b ptr] is copied to the next 

entry in ‘c’, and the appropriate counters are advanced. When either input list is 

exhausted, the remainder of the other list is copied to ‘c’. 

 

To illustrate how merge process works. For example, let us consider the array ‘a’ 

containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison is done 

between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr. 

 
 

 

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr. 
 

 

 
 
 

 

    

 13 24 26 

h 

ptr 

   

 

    

 15 27 28 

j 

ptr 

   

 

        

        

i 

ptr 

       

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

j 
ptr 

   

 

        

        

 i 
ptr 
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then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr. 
 

 

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr. 
 

 

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and c ptr. 
 

 

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and c ptr. 
 

 

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’. 

 

 

 
h 

ptr 

 
 

Algorithm 
 

Algorithm MERGESORT (low, high) 

// a (low : high) is a global array to be sorted. 
{ 

 
i 

ptr 

if (low < high) 

{ 

mid := (low  + high)/2 //finds where to split the set 

MERGESORT(low,  mid) //sort one subset 

MERGESORT(mid+1, high) //sort the other subset 
MERGE(low, mid, high) // combine the results 

} 

} 

 

 

 

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

 j 
ptr 

  

 

        

  13      

  i 
ptr 

     

 

    

 13  26 

  h 

ptr 

 

 

    

 15 27 28 

 j 

ptr 

  

 

        

  13 15     

   i 

ptr 

    

 

    

 13 24  

  h 

ptr 

 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15     

    i 

ptr 

   

 

    

 13 24 26 

   h 

ptr 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15 24 26   

     i 

ptr 

  

 

    

 13 24 26 

    

 

    

 15 27 28 

  j 

ptr 

 

 

        

   15 24 26 27 28 
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Algorithm MERGE (low, mid, high) 
// a (low : high) is a global array containing two sorted subsets 

// in a (low : mid) and in a (mid + 1 : high). 

// The objective is to merge these sorted sets into single sorted 

// set residing in a (low : high). An auxiliary array B is used. 
{ 

h :=low; i := low; j:= mid + 1; 

while ((h < mid) and (J < high)) do 
{ 

if (a[h] < a[j]) then 
{ 

 
} 

else 
{ 

 
} 

b[i] := a[h]; h := h + 1; 

 
 

b[i] :=a[j]; j := j + 1; 

i := i + 1; 
} 

if (h > mid) then 
for k := j to high do 

{ 

b[i] := a[k]; i := i + 1; 

} 
else 

for k := h to mid do 
{ 

b[i] := a[K]; i := i + l; 
} 

for k := low to high do 

a[k] := b[k]; 

} 

 

 

Example 

 
For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate 
merge sort algorithm: 
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Tree Calls of MERGESORT(1, 8) 

 
The following figure represents the sequence of recursive calls that are produced by 

MERGESORT when it is applied to 8 elements. The values in each node are the values 

of the parameters low and high. 

 
 

 

 

 

 
 

 
 

Tree Calls of MERGE() 

 
The tree representation of the calls to procedure MERGE by MERGESORT is as 
follows: 

 
 

 

 

 
 

 
Analysis of Merge Sort 

 

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so 
we solve for the case n = 2k. 

 

For n = 1, the time to merge sort is constant, which we will be denote by 1. 

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two 

recursive merge sorts of size n/2, plus the time to merge, which is linear. The 

equation says this exactly: 

 

T(1) = 1 

T(n) = 2 T(n/2) + n 

 

This is a standard recurrence relation, which can be solved several ways. We will 

solve by substituting recurrence relation continually on the right–hand side. 

 

We have, T(n) = 2T(n/2) + n 

 

 

 

1, 8 

2, 2 1, 1 

1, 2 

4, 4 3, 3 

3, 4 

6, 6 5, 5 

5, 6 

8, 8 7, 7 

7, 8 

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8 

1, 4, 8 

5, 6, 8 1, 2, 4 

1, 4 5, 8 
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T    
2 

Since we can substitute n/2 into this main equation 
 

2 T(n/2) 

 

We have, 

= 

= 

2 (2 (T(n/4)) + n/2) 

4 T(n/4) + n 

T(n/2) = 2 T(n/4) + n 

T(n) = 4 T(n/4) + 2n 

 

Again, by substituting n/4 into the main equation, we see that 
 

4T (n/4) = 
= 

4 (2T(n/8)) + n/4 
8 T(n/8) + n 

So we have,   

T(n/4) = 2 T(n/8) + n 

T(n) = 8 T(n/8) + 3n 

 

Continuing in this manner, we obtain: 

 

T(n) = 2k T(n/2k) + K. n 

 

As n = 2k, K = log2n, substituting this in the above equation 
 

T (n)  2log 2
n
  2

k  
 k 

 
  

log
2 
n . n 

 
  

= n T(1) + n log n 

= n log n + n 

Representing this in O notation: 

T(n) = O(n log n) 
 

We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’ 

is not a power of 2. The answer turns out to be almost identical. 

 

Although merge sort’s running time is O(n log n), it is hardly ever used for main 

memory sorts. The main problem is that merging two sorted lists requires linear 

extra memory and the additional work spent copying to the temporary array and 

back, throughout the algorithm, has the effect of slowing down the sort considerably. 

The Best and worst case time complexity of Merge sort is O(n log n). 

 

Strassen’s Matrix Multiplication: 

 

The matrix multiplication of algorithm due to Strassens is the most dramatic example 

of divide and conquer technique (1969). 

 

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C’ as 
follows : 

 
for i := 1 to n do 

for j :=1 to n do 
c[i, j] := 0; 
for K: = 1 to n do 

c[i, j] := c[i, j] + a[i, k] * b[k, j]; 
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This algorithm requires n3 scalar multiplication’s (i.e. multiplication of single 
numbers) and n3 scalar additions. So we naturally cannot improve upon. 

 

We apply divide and conquer to this problem. For example let us considers three 

multiplication like this: 

A 11 A 12  B 11 B 12  C 11  
C 12  

   A A B B 
 

C C 

 

 21 22   21 22   21 22  
 

Then cij can be found by the usual matrix multiplication algorithm, 

C11 = A11 . B11 + A12 . B21 

C12 = A11 . B12 + A12 . B22 

C21 = A21 . B11 + A22 . B21 

C22 = A21 . B12 + A22 . B22 

 

This leads to a divide–and–conquer algorithm, which performs nxn matrix 

multiplication by partitioning the matrices into quarters and performing eight 

(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions. 

 
T(1) = 1 

T(n) = 8 T(n/2) 

 

Which leads to T (n) = O (n3), where n is the power of 2. 

 
Strassens insight was to find an alternative method for calculating the Cij, requiring 
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix  
additions and subtractions: 

 

P =  (A11 + A22) (B11 + B22) 

Q = (A21 + A22) B11 

R =  A11  (B12 – B22) 

S  =   A22 (B21 - B11) 

T = (A11 + A12) B22 

U  =  (A21 – A11) (B11 + B12) 

V = (A12 – A22) (B21 + B22) 

C11 = P + S – T + V 

C12 = R + T 

C21 = Q + S 

C22 = P + R - Q + U. 
 

This method is used recursively to perform the seven (n/2) x (n/2) matrix 

multiplications, then the recurrence equation for the number of scalar multiplications 

performed is: 
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T(1) = 1 

T(n) = 7 T(n/2) 
 

Solving this for the case of n = 2k is easy: 
 

T(2k) = 

 

= 

7 T(2k–1) 

 

72 T(2k-2) 

 
= 

= 

- - - - - - 

- - - - - - 

 
= 7i T(2k–i) 

 

Put i = k  
= 7k T(1) 

 

= 7k 
 

That is,  T(n)  =        7 log
2
n
 

= n log 7 

 

= O(n log 7) = O(2n.81) 

 
So, concluding that Strassen’s algorithm is asymptotically more efficient than the 

standard algorithm. In practice, the overhead of managing the many small matrices 

does not pay off until ‘n’ revolves the hundreds. 

 

Quick Sort 
 

The main reason for the slowness of Algorithms like SIS is that all comparisons and 
exchanges between keys in a sequence w1, w2, . . . . , wn take place between 
adjacent pairs. In this way it takes a relatively long time for a key that is badly out of 
place to work its way into its proper position in the sorted sequence. 

 

Hoare his devised a very efficient way of implementing this idea in the early 1960’s 

that improves the O(n2) behavior of SIS algorithm with an expected performance that 

is O(n log n). 

 

In essence, the quick sort algorithm partitions the original array by rearranging it 

into two groups. The first group contains those elements less than some arbitrary 

chosen value taken from the set, and the second group contains those elements 

greater than or equal to the chosen value. 

 

The chosen value is known as the pivot element. Once the array has been rearranged 

in this way with respect to the pivot, the very same partitioning is recursively applied 

to each of the two subsets. When all the subsets have been partitioned and 

rearranged, the original array is sorted. 

 

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward 
each other in the following fashion: 

 

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot. 
 

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot. 
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 If j > i, interchange a[j] with a[i] 
 

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ 
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot 
element in ‘j’ pointer position. 

 
The program uses a recursive function quicksort(). The algorithm of quick sort 
function sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’. 

 
 It terminates when the condition low >= high is satisfied. This condition 

will be satisfied only when the array is completely sorted. 

 
 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it 

calls the partition function to find the proper position j of the element 
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . 
. . . x[j-1] and x[j+1], x[j+2], . . .x[high]. 

 

 It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . 

. . x[j-1] between positions low and j-1 (where j is returned by the 

partition function). 
 

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . . . . . 

. . . x[high] between positions j+1 and high. 

 

Algorithm Algorithm 

QUICKSORT(low, high) 
/* sorts the elements a(low), . . . . . , a(high) which reside in the global array A(1 : 

n) into ascending order a (n + 1) is considered to be defined and must be greater 
than all elements in a(1 : n); A(n + 1) = +  */ 
{ 

if low < high then 
{ 

j := PARTITION(a, low, high+1); 

// J is the position of the partitioning element 

QUICKSORT(low, j – 1); 
QUICKSORT(j + 1 , high); 

} 
} 

 

Algorithm PARTITION(a, m, p) 

{ 

V   a(m); i   m; j  p; // A (m) is the partition element 

do 
{ 

loop  i  := i   + 1  until  a(i) > v // i moves left to right 

loop  j  := j  – 1  until  a(j)  < v // p moves right to left 

if (i < j) then INTERCHANGE(a, i, j) 
} while (i > j); 

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P 

return j; 
} 

 

 

 

 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 15  

Algorithm INTERCHANGE(a, i, j) 
{ 

P:=a[i]; 

a[i] := a[j]; 

a[j] := p; 
} 

 

 

Example 

 

Select first element as the pivot element. Move ‘i’ pointer from left to right in search 

of an element larger than pivot. Move the ‘j’ pointer from right to left in search of an 

element smaller than pivot. If such elements are found, the elements are swapped. 

This process continues till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’ 

pointer, the position for pivot is found and interchange pivot and element at ‘j’ 

position. 

 

Let us consider the following example with 13 elements to analyze quick sort: 
 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

Remarks 

38 08 16 06 79 57 24 56 02 58 04 70 45  

pivot    i      j   swap i & j 

    04      79    

     i   j     swap i & j 

     02   57      

      j i       

(24 08 16 06 04 02) 38 (56 57 58 79 70 45) 
swap pivot 

& j 

pivot 
    

j, i 
       swap pivot 

& j 

(02 08 16 06 04) 24         

pivot, 
j 

i 
           swap pivot 

& j 

02 (08 16 06 04)          

 pivot i  j         swap i & j 

  04  16          

   j i          

 
(06 04) 08 (16) 

        swap pivot 
& j 

 pivot, 
j i 

           

 
(04) 06 

          swap pivot 
& j 

 04 

pivot, 

j, i 

            

    16 

pivot, 
j, i 

         

(02 04 06 08 16 24) 38        

       (56 57 58 79 70 45)  
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       pivot i    j swap i & j 

        45    57  

        j i     

       
(45) 56 (58 79 70 57) 

swap pivot 
& j 

       45 

pivot, 
j, i 

     
swap pivot 

& j 

         (58 
pivot 

79 
i 

70 
57) 
j 

swap i & j 

          57  79  

          j i   

         
(57) 58 (70 79) 

swap pivot 
& j 

         57 

pivot, 

j, i 

    

           (70 79)  

           pivot, 
j 

i 
swap pivot 

& j 
           70   

            79 

pivot, 

j, i 

 

       (45 56 57 58 70 79)  

02 04 06 08 16 24 38 45 56 57 58 70 79  

 

 

Analysis of Quick Sort: 

 

Like merge sort, quick sort is recursive, and hence its analysis requires solving a 

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot 

(and no cut off for small files). 
 

We will take T (0) = T (1) = 1, as in merge sort. 

 

The running time of quick sort is equal to the running time of the two recursive calls 

plus the linear time spent in the partition (The pivot selection takes only constant 

time). This gives the basic quick sort relation: 

 

T (n) = T (i) + T (n – i – 1) +  C n - (1) 

 

Where, i = |S1| is the number of elements in S1. 

 

Worst Case Analysis 

 
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, 

which is insignificant, the recurrence is: 
 

T (n) = T (n – 1) +  C n n > 1 - (2) 

 

Using equation – (1) repeatedly, thus 
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 

1 

T (n – 1) = T (n – 2) + C (n – 1) 

 

T (n – 2) = T (n – 3) + C (n – 2) 

 

- - - - - - - - 

 

T  (2) = T (1) + C (2) 

 

Adding up all these equations yields 
 

 
T (n)  T (1)  

n 

i 
i  2 

= O  (n2) - (3) 

 

Best Case Analysis 

 

In the best case, the pivot is in the middle. To simply the math, we assume that the 

two sub-files are each exactly half the size of the original and although this gives a 

slight over estimate, this is acceptable because we are only interested in a Big – oh 

answer. 

 

T (n)    =  2 T (n/2) + C n - (4) 

 

Divide both sides by n 
 

T(n) 
 

  

n 
 

T(n / 2) 
 C 

n / 2 

 

- (5) 

 

Substitute n/2 for ‘n’ in equation (5) 
 

T(n / 2) 
 

  

n / 2 
 

T(n / 4) 
 C 

n / 4 

 

- (6) 

 

Substitute n/4 for ‘n’ in equation (6) 
 

T(n / 4) 
 

  

n / 4 
 

T(n / 8) 
 C 

n / 8 

 

- (7) 

- - - - - - - - 

- - - - - - - - 

Continuing in this manner, we obtain: 
 

T(2) 

2 
 

T(1) 
 C

 
 

- (8) 

We add all the equations from 4 to 8 and note that there are log n of them: 
 

T(n) 
 

  

n 
 

T(1) 

1 

 

 C log n - (9) 

 

Which yields, T (n) = C n log n + n = O(n  log n) - (10) 

This is exactly the same analysis as merge sort, hence we get the same answer. 

69 
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Average Case Analysis 

 
The number of comparisons for first call on partition: Assume left_to_right moves 

over k smaller element and thus k comparisons. So when right_to_left crosses 

left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1 

comparisons. The average case complexity of quicksort is 
 

T(n) = comparisons for first call on quicksort 
+ 

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) + 

----- + T(n-1)]/n 
 

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)] 

 
(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \ 

 
Subtracting both sides: 

 
nT(n) –(n-1)T(n-1) = [ n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1) 

nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1) 

T(n) = 2 + (n+1)T(n-1)/n 

The recurrence relation obtained is: 

T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

 
Using the method of subsititution: 

 
T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

T(n-1)/n = 2/n + T(n-2)/(n-1) 

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2) 

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3) 

.  . 

.  . 

T(3)/4 = 2/4 + T(2)/3 

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0) 

Adding both sides: 

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] 

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) + 

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3] 

Cancelling the common terms: 

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)] 

T(n) = (n+1)2[ 2k n 1 
1/ k 

=2(n+1) [ ] 

=2(n+1)[log (n+1) – log 2] 
=2n log (n+1) + log (n+1)-2n log 2 –log 2 

T(n)= O(n log n) 

 
 

3.8. Straight insertion sort: 

 

Straight insertion sort is used to create a sorted list (initially list is empty) and at 

each iteration the top number on the sorted list is removed and put into its proper 
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place in the sorted list. This is done by moving along the sorted list, from the 
smallest to the largest number, until the correct place for the new number is located 

i.e. until all sorted numbers with smaller values comes before it and all those with 

larger values comes after it. For example, let us consider the following 8 elements for 

sorting: 

 
Index 1 2 3 4 5 6 7 8 

Elements 27 412 71 81 59 14 273 87 

 

Solution: 

 
Iteration 0: 

 
 

unsorted 

 
 

412 

 
 

71 

 
 

81 

 
 

59 

 
 

14 

 
 

273 

 
 

87 

 

 Sorted 27        

Iteration 1: unsorted 412 71 81 59 14 273 87 
 

 Sorted 27 412       

Iteration 2: unsorted 71 81 59 14 273 87 
  

 Sorted 27 71 412      

Iteration 3: unsorted 81 39 14 273 87 
   

 Sorted 27 71 81 412     

Iteration 4: unsorted 59 14 273 87 
    

 Sorted 274 59 71 81 412    

Iteration 5: unsorted 14 273 87 
     

 Sorted 14 27 59 71 81 412   

Iteration 6: unsorted 273 87 
      

 Sorted 14 27 59 71 81 273 412  

Iteration 7: unsorted 87 
       

 Sorted 14 27 59 71 81 87 273 412 
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Greedy Method
 

GENERAL METHOD 

 
Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset 

that satisfies these constraints is called a feasible solution. We need to find a feasible 

solution that either maximizes or minimizes the objective function. A feasible solution 

that does this is called an optimal solution. 
 

The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, 

a decision is made regarding whether or not a particular input is in an optimal solution. 

This is done by considering the inputs in an order determined by some selection 

procedure. If the inclusion of the next input, into the partially constructed optimal 

solution will result in an infeasible solution then this input is not added to the partial 

solution. The selection procedure itself is based on some optimization measure. Several 

optimization measures are plausible for a given problem. Most of them, however, will 

result  in  algorithms  that  generate  sub-optimal  solutions.  This  version  of  greedy 

technique is called subset paradigm. Some problems like Knapsack, Job sequencing 

with deadlines and minimum cost spanning trees are based on subset paradigm. 
 

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are 

based on ordering paradigm. 
 

CONTROL ABSTRACTION 

Algorithm Greedy (a, n) 
// a(1 : n) contains the ‘n’ inputs 
{ 

solution := ;                   // initialize the solution to empty 

for i:=1 to n do 
{ 

x := select (a); 

if  feasible (solution, x) then 

solution := Union (Solution, x); 
} 

return solution; 
} 

 

Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are 

properly implemented. 
 

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’. 

Feasible is a Boolean valued function, which determines if ‘x’ can be included into the 

solution vector. The function Union combines ‘x’ with solution and updates the objective 

function. 
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KNAPSACK PROBLEM 
 

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’ 

objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity 
‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi 

xi is earned. The objective is to fill the knapsack that maximizes the total profit earned. 

 
Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to 
be at most ‘m’. The problem is stated as: 

 
maximize 

 

 
subject to 

n 

 pi  xi 

i  1 

n 

 ai     xi   M        where, 0 < xi < 1 and 1 < i <  n 
i  1

 
The profits and weights are positive numbers. 

 

 
Algorithm 

 
If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy. 
 

Algorithm GreedyKnapsack (m, n) 
 

// P[1 : n] and w[1 : n] contain the profits and weights respectively of 
 

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1]. 
 

// m is the knapsack size and x[1: n] is the solution vector. 
 

{ 

for i := 1 to n do x[i]  := 0.0                   // initialize x 

U := m; 
for i := 1 to n do 
{ 

if  (w(i) > U) then break; 

x [i] := 1.0; U := U – w[i]; 
} 
if (i < n) then x[i] := U / w[i]; 

} 
 

 
Running time: 

 
The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we 
disregard the time to initially sort the objects, the algorithm requires only O(n) time. 

 

 
Example: 

 
Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = 
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10). 
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1.  First, we try to fill the knapsack by selecting the objects in some order: 
 

x1 x2 x3  wi  xi  pi  xi 

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4 

= 16.5 

25 x 1/2 + 24 x 1/3 + 15 x 1/4 = 

24.25 
 

 

2.  Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit 

earned is 25. Now, only 2 units of space is left, select the object with next largest 
profit (p = 24). So, x2  = 2/15 

 
x1 x2 x3  wi  xi  pi  xi 

1 2/15 0 18 x 1  + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2 

 

 
 

3.  Considering the objects in the order of non-decreasing weights wi. 
 

x1 x2 x3  wi  xi  pi  xi 

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31 

 

 

4. Considered the objects in the order of the ratio pi / wi . 
 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 

 

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the 
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 
units of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the 
profit earned is 7.5. 

x1 x2 x3  wi  xi  pi  xi 

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5 

 

 

This solution is the optimal solution. 
 

 
 

 

 

JOB SEQUENCING WITH DEADLINES 

 
When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and 
profit Pi  > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its 
deadline. Only one machine is available for processing jobs. An optimal solution is the 
feasible solution with maximum profit. 

 
Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ 

k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is 

feasible, we have just to insert i into J preserving the deadline ordering and then verify 

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1. 
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Example: 

 
Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1  d2  d3 d4) = (2, 1, 2, 1). The 
feasible solutions and their values are: 

 
S. No Feasible Solution Procuring 

sequence 
Value Remarks 

1 1,2 2,1 110  

2 1,3 1,3 or 3,1 115  

3 1,4 4,1 127 OPTIMAL 

4 2,3 2,3 25  

5 3,4 4,3 42  

6 1 1 100  

7 2 2 10  

8 3 3 15  

9 4 4 27  
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Algorithm: 

 
The algorithm constructs an optimal set J of jobs that can be processed by their 
deadlines. 

 
Algorithm GreedyJob (d, J, n) 

 

// J is a set of jobs that can be completed by their deadlines. 
 

{ 
J := {1}; 

for i := 2 to n do 
{ 

if (all jobs in J U {i} can be completed by their dead lines) 

then J := J U {i}; 
} 

} 
 

 
 

OPTIMAL MERGE PATERNS 
 

Given ‘n’ sorted files, there are many ways to pair wise merge them into a single sorted 

file. As, different pairings require different amounts of computing time, we want to 

determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise 

merge ‘n’ sorted files together. This type of merging is called as 2-way merge patterns. 

To merge an n-record file and an m-record file requires possibly n + m record moves, 

the obvious choice choice is, at each step merge the two smallest files together. The 

two-way merge patterns can be represented by binary merge trees. 
 

 
Algorithm to Generate Two-way Merge Tree: 

 
struct treenode 
{ 

treenode * lchild; 

treenode * rchild; 
}; 

 

Algorithm TREE (n) 
// list is a global of n single node binary trees 
{ 

for i := 1 to n – 1 do 
{ 

pt   new treenode 

(pt  lchild)   least (list);           //  merge two  trees  with  smallest 

lengths 
(pt  rchild)  least (list); 

(pt  weight)  ((pt  lchild)  weight) + ((pt  rchild)  weight); 
insert (list, pt);

 

 
tree 
} 

} 

return least (list);                                  // The tree left in list is the     merge

 

 
 
 
 
 
 
 



Design and Analysis of Algorithms 

 

6 

GVP College of  Engineering for Women 

 
 
 
 
 

Example 1: 

 
Suppose we are having three sorted files X1, X2 and X3 of length 30, 20, and 10 records 
each. Merging of the files can be carried out as follows: 

 

S.No First Merging Record moves in 

first merging 

Second 

merging 

Record moves in 

second merging 

Total no. of 

records moves 
1. X1 & X2 = T1 50 T1 & X3 60 50 + 60 = 110 

2. X2 & X3 = T1 30 T1 & X1 60 30 + 60 = 90 

 

The Second case is optimal. 
 

 
 

Example 2: 
 

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to 

find optimal way of pair wise merging to give an optimal solution using binary merge 

tree representation. 
 

 
Solution: 

 

20  30  10  5  30 

 

X1 
  

X2 
  

X3 
  

X4 
  

X5 

 
 

Merge X4 and X3 to get 15 record moves.  Call this Z1. 
 

 
X1         X2           Z1             X5 

 

20          30           15              30 
 

 
5         10 

 

 
 

Merge Z1 and X1 to get 35 record moves. Call this Z2. 
 
 

X2                Z2               X5 
 

30               35               30 
 

 
Z1   15         20   X1 

 

 
 

X4     5          10    X3 
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Merge X2 and X5 to get 60 record moves. Call this Z3. 
 
 

Z2                           Z3
 

35 
 

 
Z1  15         20 

 

X1 
 

5          10 

 

60 
 

 
 
30         30 
 

X5         X2

 

X4        X3 
 
 

Merge Z2 and Z3 to get 90 record moves. This is the answer. Call this Z4. 
 
 

Z4 
 

95 
 
 

Z2   35                    60   Z3 
 

 
Z1  15        20        30       30

 

 
5        10 

 

X1        X5      X2

 

X4      X3 
 

 

Therefore the total number of record moves is 15 + 35 + 60 + 95 = 205. This is an 
optimal merge pattern for the given problem. 

 

 
 

Huffman Codes 
 

Another application of Greedy Algorithm is file compression. 
 

Suppose that we have a file only with characters a, e, i, s, t, spaces and new lines, the 

frequency of appearance of a's is 10, e's fifteen, twelve i's, three s's, four t's, thirteen 

banks and one newline. 

 
Using a standard coding scheme, for 58 characters using 3 bits for each character, the 
file requires 174 bits to represent. This is shown in table below. 

 

Character  
 

A 

Code  
 

000 

 Frequency 
 

10 

Total bits 
 

30 

E 001  15 45 

I 010  12 36 

S 011  3 9 

T 100  4 12 

Space 101  13 39 

New line 110  1 3 
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Representing by a binary tree, the binary code for the alphabets are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

a             e        i             s         l           sp          nl 
 
 

The representation of each character can be found by starting at the root and recording 
the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch. 

 

If the character ci  is at depth di  and occurs fi times, the cost of the code is equal to 

 di  fi 
 

With this representation the total number of bits is 3x10 + 3x15 + 3x12 + 3x3 + 3x4 + 

3x13 + 3x1 = 174 
 

A better code can be obtained by with the following representation. 
 
 
 
 
 
 
 

 

nl 
 

 

a             e         i             s         l           sp 
 
 

The basic problem is to find the full binary tree of minimal total cost. This can be done 

by using Huffman coding (1952). 
 

 
Huffman's Algorithm: 

 
Huffman's algorithm can be described as follows: We maintain a forest of trees. The 

weights of a tree is equal to the sum of the frequencies of its leaves. If the number of 

characters is 'c'. c - 1 times, select the two trees T1 and T2, of smallest weight, and 

form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal 

Huffman coding tree. 
 

 
Example: 

 
The initial forest with the weight of each tree is as follows: 

 
10          15          12          3            4           13         1 

a             e             i            s            t            sp          nl 
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The two trees with the lowest weight are merged together, creating the forest, the 
Huffman algorithm after the first merge with new root T1 is as follows: The total weight 
of the new tree is the sum of the weights of the old trees. 

 

 
10          15          12          4            13          4

 

a             e            i t           sp T1 

 
s           nl

 
 

We again select the two trees of smallest weight. This happens to be T1 and t, which 
are merged into a new tree with root T2 and weight 8. 

 
10         15         12          13             8 

a             e            i           sp             T2 

 
T1          t 

s           nl 

 
In next step we merge T2 and a creating T3, with weight 10+8=18. The result of this 
operation in 

 
 

15          12           13           18 

e               i            sp            T3 
 

 
T2         a 

 

 
T1         t 

s       nl 

 

After third merge, the two trees of lowest weight are the single node trees representing 

i and the blank space. These trees merged into the new tree with root T4. 
 

 
 

15                    25                     18 

e                     T4                     T3 

 

i            sp        T2         a 

T1          t 

s       nl 
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The fifth step is to merge the trees with roots e and T3. The results of this step is 

 
25                                   33 

T4                                   T5 

 
i            sp                   T3           e 

 

 
T2          a 

T1          t 

s        nl 
 
 

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal 

trees with root T6 is: 
 
 

T6 

0           1 
 

T5                  T4 
0        1      0        1 

T3           e         i         sp 
0         1 

 

T2          a 
0        1 

 

T1         t 
0        1 

 

s        nl 
 
 

 
The full binary tree of minimal total cost, where all characters are obtained in the 

leaves, uses only 146 bits. 
 

 
Character Code Frequency Total bits 

 

(Code bits X frequency) 

A 001 10 30 

E 01 15 30 

I 10 12 24 

S 00000 3 15 

T 0001 4 16 

Space 11 13 26 

New line 00001 1 5 

  Total : 146 
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GRAPH ALGORITHMS 
 

 
Basic Definitions: 

 
  Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite 

set of pairs from V (set of edges). We will often denote n := |V|, m := |E|. 
 

     Graph G can be directed, if E consists of ordered pairs, or undirected, if E 

consists of unordered pairs. If (u, v)  E, then vertices u, and v are adjacent. 

 
     We can assign weight function to the edges: wG(e) is a weight of edge e  E. 

The graph which has such function assigned is called weighted. 

 
  Degree of a vertex v is the number of vertices u for which (u, v)  E (denote 

deg(v)). The number of incoming edges to a vertex v is called in–degree of 

the vertex (denote indeg(v)). The number of outgoing edges from a vertex is 

called out-degree (denote outdeg(v)). 
 

 
Representation of Graphs: 

 
Consider graph G = (V, E), where V= {v1, v2,….,vn}. 

 
Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where 

 

a i,  j 
  1,  if (vi , v j )  E, 

   

  0,  otherwise

 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if 

the graph is directed. 
 

We may consider various modifications. For example for weighted graphs, we may 

have
 

a i,  j 
 w (vi, v j ), 

   
 default, 

if (vi , v j )  E, 

otherwise,

 

Where default is some sensible value based on the meaning of the weight function 

(for example, if weight function represents length, then default can be , meaning 

value larger than any other value). 
 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 <  v <  n, Adj [v] 

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 

that can be reached from v by a single edge). If the edges have weights then these 

weights may also be stored in the linked list elements. 
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Paths and Cycles: 
 

A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1)  E. A 
path is simple if all vertices in the path are distinct. 

 
A (simple) cycle is a sequence of vertices (v1, v2, . . . . . . , vk, vk+1 = v1), where for 
all i, (vi, vi+1)  E and all vertices in the cycle are distinct except pair v1, vk+1. 

 

 
 

Subgraphs and Spanning Trees: 
 

Subgraphs: A graph G’ = (V’, E’) is a subgraph of graph G = (V, E) iff V’   V and E’ 
E. 

 
The undirected graph G is connected, if for every pair of vertices u, v there exists a 

path from u to v. If a graph is not connected, the vertices of the graph can be divided 

into connected components. Two vertices are in the same connected component iff 

they are connected by a path. 
 

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree 

that contains all vertices of V and is a subgraph of G. A single graph can have multiple 

spanning trees. 
 

Lemma 1: Let T be a spanning tree of a graph G. Then 
 

1.  Any two vertices in T are connected by a unique simple path. 
 

2.  If any edge is removed from T, then T becomes disconnected. 
 

3.  If we add any edge into T, then the new graph will contain a cycle. 
 

4.  Number of edges in T is n-1. 
 
 

Minimum Spanning Trees (MST): 
 

A spanning tree for a connected graph is a tree whose vertex set is the same as the 

vertex set of the given graph, and whose edge set is a subset of the edge set of the 

given graph. i.e., any connected graph will have a spanning tree. 

 
Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum 

spanning tree (MST) is a spanning tree with the smallest possible weight. 
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G: 

 
A gra p h G:  

T h re e ( of  ma n y p o s s ib l e)  s p a n n in g t re e s f ro m gra p h G:

 
 

 
2                                                                                    2 

 

4 

G:  3                     5                                                              3 
6 

 

1                                                                                    1 
 

 
A  w e ig ht e d  gra p h  G:               T h e  min i ma l  s p a n n in g  t re e  f ro m  w e ig ht e d  gra p h  G:  

 

 
Here are some examples: 

 

 

To explain further upon the Minimum Spanning Tree, and what it applies to, let's 
consider a couple of real-world examples: 

 

1. One practical application of a MST would be in the design of a network. For 

instance, a group of individuals, who are separated by varying distances, wish 

to be connected together in a telephone network. Although MST cannot do 

anything about the distance from one connection to another, it can be used to 

determine  the  least  cost  paths  with  no  cycles  in  this  network,  thereby 

connecting everyone at a minimum cost. 
 

2. Another useful application of MST would be finding airline routes. The vertices of 

the graph would represent cities, and the edges would represent routes between 
the cities. Obviously, the further one has to travel, the more it will cost, so MST 
can be applied to optimize airline routes by finding the least costly paths with no 
cycles. 

 

 
 

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the 

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, 

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s 

algorithm uses vertex connections in determining the MST. 
 

 
 

Kruskal’s Algorithm 
 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. 

picking an edge with the least weight in a MST). 
 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges 

have been added. Sometimes two or more edges may have the same cost. The order in 

which the edges are chosen, in this case, does not matter. Different MSTs may result, 

but they will all have the same total cost, which will always be the minimum cost. 
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Algorithm: 

 
The algorithm for finding the MST, using the Kruskal’s method is as follows: 

 
Algorithm Kruskal (E, cost, n, t) 

// E is the set of edges in G. G has n vertices. cost [u, v] is the 

// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree. 

// The final cost is returned. 

{ 

Construct a heap out of the edge costs using heapify; 
for i := 1 to n do parent [i] := -1;

 
i := 0; mincost := 0.0; 

// Each vertex is in a different set.

while ((i < n -1) and (heap not empty)) do 
{ 

Delete a minimum cost edge (u, v) from the heap and 

re-heapify using Adjust; 

j := Find (u); k := Find (v); 

if  (j  k) then 
{ 

i := i + 1; 

t [i, 1] := u; t [i, 2] := v; 

mincost :=mincost + cost [u, v]; 

Union (j, k); 
} 

} 

if (i  n-1) then write ("no spanning tree"); 

else return mincost; 
} 

 

 
Running time: 

 
     The number of finds is at most 2e, and the number of unions at most n-1. 

Including the initialization time for the trees, this part of the algorithm has a 

complexity that is just slightly more than O (n + e). 
 

     We can add at most n-1 edges to tree T. So, the total time for operations on T is 

O(n). 
 

Summing up the various components of the computing times, we get O (n + e log e) as 

asymptotic complexity 
 

 
 

Example 1: 
 

 

1       
1 0      

2          50  

4  5        4 0 
30                               3 5 

 

4        25              5 
55  

20                           15  
6 
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Arrange all the edges in the increasing order of their costs: 
 

Cost 10 15 20 25 30 35 40 45 50 55 

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6) 
 

The edge set T together with the vertices of G define a graph that has up to n 

connected components. Let us represent each component by a set of vertices in it. 

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle, 

we need to check whether u and v are in the same vertex set. If so, then a cycle is 

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice. 

When an edge is included in T, two components are combined into one and a union is 

to be performed on the two sets. 
 

Edge Cost Spanning Forest Edge Sets Remarks 

   

 
 
 

 
{1},   {2},   {3}, 

{4}, {5}, {6} 

 

 
(1, 2) 

 
10 

 

1         2            
 

 
{1, 2}, {3}, {4}, 

{5}, {6} 

 
The vertices 1 and 
2  are in  different 
sets, so the edge 

is combined 

 
(3, 6) 

 
15 

 

1         2               3              
 

6 

 
{1,  2},  {3,  6}, 
{4}, {5} 

 
The vertices 3 and 
6  are in  different 
sets, so the edge 
is combined 

 
(4, 6) 

 
20 

 

1         2               3           
 

4         6 

 
{1, 2}, {3, 4,  6}, 

{5} 

 
The vertices 4 and 
6  are in  different 
sets, so the edge 
is combined 

 
(2, 6) 

 
25 

 

1            2                     
 

4                    3 

 
6 

 
{1, 2, 3, 4,   6}, 

{5} 

 
The vertices 2 and 

6  are in  different 
sets, so the edge 
is combined 

 
(1, 4) 

 
30 

 
Reject 

 The vertices 1 and 

4 are in the same 

set, so the edge is 

rejected 

 
(3, 5) 

 
35 

 
1            2 

 

 
4                    5              3 

 
6 

 

 
 
 

{1, 2, 3, 4, 5, 6} 

 
The vertices 3 and 
5 are in the same 

set, so the edge is 
combined 
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MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM 

 
A given graph can have many spanning trees. From these many spanning trees, we 
have to select a cheapest one. This tree is called as minimal cost spanning tree. 

 
Minimal cost spanning tree is a connected undirected graph G in which each edge is 

labeled with a number (edge labels may signify lengths, weights other than costs). 

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as 

small as possible 
 

The slight modification of the spanning tree algorithm yields a very simple algorithm for 

finding  an  MST. In  the  spanning  tree  algorithm,  any  vertex  not  in the tree  but 

connected to it by an edge can be added. To find a Minimal cost spanning tree, we 

must be selective - we must always add a new vertex for which the cost of the new 

edge is as small as possible. 
 

This simple modified algorithm of spanning tree is called prim's algorithm for finding an 

Minimal cost spanning tree. 
 

Prim's algorithm is an example of a greedy algorithm. 
 

 
Algorithm Algorithm Prim 

 
(E, cost, n, t) 
// E is the set of edges in G. cost [1:n, 1:n] is the cost 

// adjacency matrix of an n vertex graph such that cost [i, j] is 

// either a positive real number or  if no edge (i, j) exists. 
// A minimum spanning tree is computed and stored as a set of 

// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in 

// the minimum-cost spanning tree. The final cost is returned. 

{ 

Let (k, l) be an edge of minimum cost in E; 

mincost := cost [k, l]; 
t [1, 1] := k; t [1, 2] := l; 

for  i :=1 to n do                                   // Initialize near 

if  (cost [i, l] < cost [i, k]) then near [i] := l; 

else near [i] := k; 

near [k] :=near [l] := 0; 
for i:=2 to n -  1 do                               // Find n - 2 additional edges for t. 
{ 

Let j be an index such that near [j]  0 and 

cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; 

mincost := mincost + cost [j, near [j]]; 

near [j] := 0 
for   k:= 1 to n do                                  // Update near[]. 

if ((near [k]  0) and (cost [k, near [k]] > cost [k, j])) 

then near [k] := j; 
} 

return mincost; 
} 
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Running time: 
 

We  do  the  same  set  of  operations  with  dist  as  in  Dijkstra's  algorithm  (initialize 
structure, m times decrease value, n - 1 times select minimum). Therefore, we get O 

(n2) time when we implement dist with array, O (n + E  log n) when we implement it 
with a heap. 

 

EXAMPLE 1: 

 
Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below 
starting with the vertex A. 

 

4 
B                 D 

 

3        2      1         2    
4
 

4     E     1 
 

A               C        2            G 
6 

2      F      1 
 

 

SOLUTION: 







The stepwise progress of the prim’s algorithm is as follows: 
 
 

Step 1: 
 

 
 

B    3  D Vertex A     B C     D     E     F G 

   Status 0     1 1     1     1     1 1 
  E Dist. 0     3 6                    

A    0            6 
 

C 

 
   F 

 G Next      *     A     A     A     A     A      A

 
 
 
 
 
 
 



Design and Analysis of Algorithms 

 

18 

GVP College of  Engineering for Women 

Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 2 4   

Next * A B B A A A 

 

Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 2 1 4 2 

Next * A B C C C A 

 

Vertex A     B      C      D      E      F        G   

Status 0 0 0 0 0 1 0 
Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

 
 
 
 
 

Step 2: 
 
 

B    3 
 

 
A    0           2 

 

 
4   D 
 

 
  E

 

C           
F 

 

Step 3: 
 
 

B    3                   1     D 

 
4    E 

A   0            2                              G 
 

C           2     F 

 

 
Step 4: 

B    3                   1     D 
 

 
2     E 

A   0             2                          4    G 
 

C                        2     F 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     1       1 
Dist.     0     3     2     1     2     2       4 

Next      *     A     B     C     D     C      D

 

Step 5: 
 
 

B    3                   1     D 
 

 
2    E 

A   0            2                          1    G 
 

C           2     F 

 

 
 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     0       1 
Dist.     0     3     2     1     2     2       1 

Next      *     A     B     C     D     C      E

 
Step 6: 

 
 

B    3                   1     D 

 
2     E 

A   0            2                          1    G 
 

C           1     F 

Step 7: 
 

 
B    3                   1     D 

 

 
Vertex   A    B    C    D    E     F      G   

Status   0     0     0     0     0     0       0
 

2     E 
A   0            2                           1    G 

Dist.     0     3 
Next      *     A 

2     1     2     1       1 
B     C     D     G      E

 

C           1     F 
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Vertex 1 Vertex 2 

2 4 

3 4 

5 3 

1 2 

 

 
 
 
 
 

EXAMPLE 2: 
 

 
Considering the following graph, find the minimal spanning tree using prim’s algorithm. 

 
 

8 
1               4      4 

9 

4                   3             5 
1 

2               3       3 
4 

 
 

    4   9 


   4     4 
The cost adjacent matrix  is  9 4   


8   1   3 


8    


1    
3   3 


    4 

        3   4 


The minimal spanning tree obtained as: 

 

 

 
 

1                 4 
 

 

4     1          3                   5 
3 

 

2                 3 
 

 
 
 
 

The cost of Minimal spanning tree = 11. 
 

The steps as per the algorithm are as follows: 
 

Algorithm near (J) = k means, the nearest vertex to J is k. 
 

The algorithm starts by selecting the minimum cost from the graph. The minimum cost 

edge is (2, 4). 
 

K = 2, l = 4 

Min cost = cost (2, 4) = 1 
 

T [1, 1] = 2 
 

T [1, 2] = 4 
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for i = 1 to 5 

Begin 

i = 1 
is cost (1, 4) < cost (1, 2) 
8 < 4, No 

Than near (1) = 2 
 

 
i = 2 
is cost (2, 4) < cost (2, 2) 

1 < , Yes 

So near [2] = 4 
 

 
i = 3 

is cost (3, 4) < cost (3, 2) 

1 < 4, Yes 

So near [3] = 4 
 

 
i = 4 
is cost (4, 4) < cost (4, 2) 

 < 1, no 

So near [4] = 2 
 

 
i = 5 

is cost (5, 4) < cost (5, 2) 
4 < , yes 

So near [5] = 4 
 

 
end 

 
near [k] = near [l] = 0 

near [2] = near[4] = 0 

Near matrix 
 

 
 
 
 

2 
 

1    2      3     4     5 
 

 
 
 

2     4 

 
1     2     3     4     5 

 

 
 
 

2    4      4 

 
1     2     3     4     5 

 
 

 
2    4       4      2 

 

 

1    2      3     4     5 
 
 

 
2    4       4     2     4 

 

 

1    2      3     4     5 
 
 

 
2    0       4     0     4 

 

 

1      2     3      4    5 

Edges added to min spanning 
tree: 

 
T [1, 1] = 2 

T [1, 2] = 4 

 
for i = 2 to n-1 (4) do 

 
i = 2 

 
for j = 1 to 5 

j = 1 

near(1)0 and cost(1, near(1)) 

2  0 and cost (1, 2) = 4 
 
j = 2 

near (2) = 0 
 
j = 3 

is near (3)  0 

4  0 and cost (3, 4) = 3 
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2 0 0 0 4 

 

2 0 0 0 3 

 

 
 
 
 
 

j = 4 
near (4) = 0 

 
J = 5 
Is near (5)  0 

4  0 and cost (4, 5) = 4 

 
select the min cost from the 
above obtained costs, which is 
3 and corresponding J = 3 

 
min cost = 1 + cost(3, 4) 

= 1 + 3 = 4                                                                       T (2, 1) = 3 
T (2, 2) = 4 

T (2, 1) = 3 

T (2, 2) = 4 
 

 
 

Near [j] = 0                                  1     2     3     4     5 
i.e. near (3) =0 

 

 
for (k = 1 to n) 

 

K = 1 

is near (1)  0, yes 

2  0 
and cost (1,2) > cost(1, 3) 

4 > 9, No 
 

K = 2 
Is near (2) 0, No 

 
K = 3 
Is near (3)  0, No 

 
K = 4 
Is near (4)  0, No 

 

 
K = 5 
Is near (5)  0 

4  0, yes                                   1     2     3     4       5 

and is cost (5, 4) > cost (5, 3) 
4 > 3, yes 

than near (5) = 3 

 
i = 3 

 

for (j = 1 to 5) 
J = 1 

is near (1) 0 
2  0 

cost (1, 2) = 4 

 
J = 2 
Is near (2) 0, No 
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2 0 0 0 0 

 

 
 
 
 
 

J = 3 
Is near (3)  0, no 

Near (3) = 0 

 
J = 4 
Is near (4)  0, no 

Near (4) = 0 

 
J = 5 
Is near (5)  0 

Near (5) = 3  3  0, yes 

And cost (5, 3) = 3 

 
Choosing the min cost from 
the above obtaining costs 
which is 3 and corresponding J 
= 5                                                                                                 T (3, 1) = 5 

T (3, 2) = 3 

Min cost = 4 + cost (5, 3) 
= 4 + 3 = 7 

 

T (3, 1) = 5 

T (3, 2) = 3 

 

 

Near (J) = 0  near (5) = 0 

 

for (k=1 to 5) 
 

1 
 

2 
 

3 
 

4 
 

5 

 

k = 1 
 

is near (1)  0, yes 

and cost(1,2) > cost(1,5) 
4 > , No 

 

K = 2 
Is near (2)  0 no 

 

K = 3 
Is near (3)  0 no 

 

K = 4 
Is near (4)  0 no 

 

K = 5 
Is near (5)  0 no 

 

i = 4 

 

for J = 1 to 5 
J = 1 

Is near (1)  0 

2  0, yes 

cost (1, 2) = 4 

 
j = 2 
is near (2)  0, No 
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J = 3 
Is near (3)  0, No 

Near (3) = 0 

 
J = 4 
Is near (4)  0, No 

Near (4) = 0 

 
J = 5 
Is near (5)  0, No 

Near (5) = 0 

 
Choosing min cost from the 

above it is only '4' and 

corresponding J = 1 
 
Min cost = 7 + cost (1,2) 

= 7+4 = 11 

 
T (4, 1) = 1 

T (4, 2) = 2 
 
Near (J) = 0  Near (1) = 0 

for (k = 1 to 5) 

K = 1 
Is near (1)  0, No 

 
K = 2 
Is near (2)  0, No 

 
K = 3 

Is near (3)  0, No 
 
K = 4 
Is near (4)  0, No 

 
K = 5 
Is near (5)  0, No 

 
End. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T (4, 1) = 1 

T (4, 2) = 2 

0 0 0 0 0  

 

1     2     3      4      5 

 

 
 
 

4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS 
 

In the previously studied graphs, the edge labels are called as costs, but here we think 

them as lengths. In a labeled graph, the length of the path is defined to be the sum of 

the lengths of its edges. 
 

In the single source, all destinations, shortest path problem, we must find a shortest 

path from a given source vertex to each of the vertices (called destinations) in the 

graph to which there is a path. 
 

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees. 
Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds  the 
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shortest path between then (or one of the shortest paths) if there is more than one. 

The principle of optimality is the basis for Dijkstra’s algorithms. 
 

Dijkstra’s algorithm does not work for negative edges at all. 
 

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph. 
 

8                                                    0      1 
 

4 
1                 2      5 

 

2                     4             5 

 
3                4       3 

1 

Graph 

2      1          3 
 

 
3      1          3       4 
 

 
4      1          2 
 

 
6      1          3         4          5

 

Shortest Paths 
 

Algorithm: 
 

Algorithm Shortest-Paths (v, cost, dist, n) 
// dist [j], 1 < j < n, is set to the length of the shortest path 
// from vertex v to vertex j in the digraph G with n vertices. 

// dist [v] is set to zero. G is represented by its 
// cost adjacency matrix cost [1:n, 1:n]. 
{ 

for i :=1 to n do 
{ 

S [i] := false;                                   // Initialize S. 
dist [i] :=cost [v, i]; 

} 

S[v] := true; dist[v]  := 0.0;                         // Put v in S. 

for num := 2 to n – 1 do 
{ 

Determine n - 1 paths from v. 
Choose u from among those vertices not in S such that dist[u] is minimum; 

S[u] := true;                                               // Put u is S. 
for (each w adjacent to u with S [w] = false) do 

if (dist [w] > (dist [u] + cost [u,  w]) then      // Update distances 
dist [w] := dist [u] + cost [u, w]; 

} 
} 

 

 
Running time: 

 
Depends on implementation of data structures for dist. 

 
     Build a structure with  n elements                                  A 

 

     at most m = E  times decrease the value of  an item   mB 
 

     ‘n’ times select the  smallest value                                nC 

     For array A = O (n); B = O (1); C = O (n) which gives O (n2) total. 
 

     For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n) 
 

total. 
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Status 0 1 1 1 1 1 1 
Dist. 0 3 6    

Next * A A A A A A 

 

Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 5 7   

Next * A B B A A A 

 



 
 
 
 
 

Example 1: 

 
Use Dijkstras algorithm to find the shortest path from A to each of the other six 
vertices in the graph: 

 

4 
B                 D 

 

3        2      1         2    
4
 

4     E     1 
 

A               C        2            G 
6 

2      F      1 
 

 

Solution: 

0   3 

3   0 

6    2 


6     -   -        -        -                


2   4    -     -    -            

0   1    4   2     -

   The cost adjacency matrix is     4   1   0   2    -   - 

    -     4    2   0    2 

4 

1 

-   -     2   -     2   0      1

                                                      -  -    -     -     4   1    1   0   

Here – means infinite 

   

The problem is solved by considering the following information: 
 

     Status[v] will be either ‘0’, meaning that the shortest path from v to v0 has 
definitely been found; or ‘1’, meaning that it hasn’t. 

 

  Dist[v] will be a number, representing the length of the shortest path from v to 

v0 found so far. 

 
  Next[v] will be the first vertex on the way to v0 along the shortest path found so 

far from v to v0 

 

The progress of Dijkstra’s algorithm on the graph shown above is as follows: 
 

Step 1: 
 
 

B    3 
 

 
 

A    0            6 
 

C 

 D 

 
 E 

 
  F 

 
 
 

 
 G 

Vertex   A     B     C     D     E     F       G

Step 2: 
 
 

B     3 

 

 
4        7   D 

 
2 

 E

A    0            5   G
 

C            
F 
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Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 5 6 9 7 

Next * A B C C C A 
 

6 D    

 

F 7         
 

Vertex A B C D E F G 

Status 0 0 0 0 1 0 1 
Dist. 0 3 5 6 8 7 8 

Next * A B C D C F 

 

Status 0 0 0 0 0 0 1 
Dist. 0 3 5 6 8 7 8 

Next * A B C D C F 

 

 

B 
 

3 
 

9 
 

D Vertex   A     B     C     D     E     F       G 

        Status 0 0 0 0 0 0 0 
        Dist. 0 3 5 6 8 7 8 

0            5    8 G Next * A B C D C F 

C             F 
7            

 

 
 
 
 
 

 

Step 3: 
 

 
 
 

B   3 
 

  

9 
 

E  G 

A 0 5     
 

C 
 
 

Step 4: 
 

B    3                   7     D 

 
8     E 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     1       1 
Dist.     0     3     5     6     8     7       10

A   0             5 
 

C 

10   G 

7     F 

Next      *     A     B     C     D     C      D

 
 
 

Step 5: 
 
 
 

B    3                   6     D 

 
8     E 

A   0            5                           8    G 
 

C           7     F 
 

Step 6: 
 
 

B    3                   8     D 

 

 
 

Vertex   A     B      C      D      E      F        G  

 
8     E 

A   0            5                          8    G 
 

C                F 

 
Step 7: 

 
 
 

 
8     E 

A 
 
 
 
 
 
 
 
 

 
 



Algorithms Lecture 7: Backtracking [Fa’14]

To resolve the question by a careful enumeration of solutions via trial and error,
continued Gauss, would take only an hour or two. Apparently such inelegant work
held little attraction for Gauss, for he does not seem to have carried it out, despite
outlining in detail how to go about it.

— Paul Campbell, “Gauss and the Eight Queens Problem:
A Study in Miniature of the Propagation of Historical Error” (1977)

I dropped my dinner, and ran back to the laboratory. There, in my excitement,
I tasted the contents of every beaker and evaporating dish on the table. Luckily for
me, none contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

7 Backtracking

In this lecture, I want to describe another recursive algorithm strategy called backtracking. A back-
tracking algorithm tries to build a solution to a computational problem incrementally. Whenever the
algorithm needs to decide between multiple alternatives to the next component of the solution, it simply
tries all possible options recursively.

7.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed by German
chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the standard 8× 8
board and by François-Joseph Eustache Lionnet in 1869 for the more general n× n board. The problem
is to place n queens on an n× n chessboard, so that no two queens can attack each other. For readers not
familiar with the rules of chess, this means that no two queens are in the same row, column, or diagonal.

Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row. So we
will represent our possible solutions using an array Q[1 .. n], where Q[i] indicates which square in row i
contains a queen, or 0 if no queen has yet been placed in row i. To find a solution, we put queens on the
board row by row, starting at the top. A partial solution is an array Q[1 .. n] whose first r − 1 entries are
positive and whose last n− r + 1 entries are all zeros, for some integer r.

The following recursive algorithm, essentially due to Gauss (who called it “methodical groping”),
recursively enumerates all complete n-queens solutions that are consistent with a given partial solution.
The input parameter r is the first empty row. Thus, to compute all n-queens solutions with no restrictions,
we would call RECURSIVENQUEENS(Q[1 .. n], 1).

RECURSIVENQUEENS(Q[1 .. n], r):
if r = n+ 1

print Q
else

for j← 1 to n
legal← TRUE

for i← 1 to r − 1
if (Q[i] = j) or (Q[i] = j + r − i) or (Q[i] = j − r + i)

legal← FALSE

if legal
Q[r]← j
RECURSIVENQUEENS(Q[1 .. n], r + 1)
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One solution to the 8 queens problem, represented by the array [4,7,3,8,2,5,1,6]

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated using a
recursion tree. The root of the recursion tree corresponds to the original invocation of the algorithm;
edges in the tree correspond to recursive calls. A path from the root down to any node shows the history
of a partial solution to the n-Queens problem, as queens are added to successive rows. The leaves
correspond to partial solutions that cannot be extended, either because there is already a queen on every
row, or because every position in the next empty row is in the same row, column, or diagonal as an
existing queen. The backtracking algorithm simply performs a depth-first traversal of this tree.
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The complete recursion tree for our algorithm for the 4 queens problem.
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7.2 Game Trees

Consider the following simple two-player game played on an n× n square grid with a border of squares;
let’s call the players Horatio Fahlberg-Remsen and Vera Rebaudi.1 Each player has n tokens that they
move across the board from one side to the other. Horatio’s tokens start in the left border, one in each
row, and move to the right; symmetrically, Vera’s tokens start in the top border, one in each column, and
move down. The players alternate turns. In each of his turns, Horatio either moves one of his tokens
one step to the right into an empty square, or jumps one of his tokens over exactly one of Vera’s tokens
into an empty square two steps to the right. However, if no legal moves or jumps are available, Horatio
simply passes. Similarly, Vera either moves or jumps one of her tokens downward in each of her turns,
unless no moves or jumps are possible. The first player to move all their tokens off the edge of the board
wins.
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Vera wins the 3× 3 game.

We can use a simple backtracking algorithm to determine the best move for each player at each
turn. The state of the game consists of the locations of all the pieces and the player whose turn it is. We
recursively define a game state to be good or bad as follows:

• A game state is bad if all the opposing player’s tokens have reached their goals.

• A game state is good if the current player can move to a state that is bad for the opposing player.

• A configuration is bad if every move leads to a state that is good for the opposing player.

1I don’t know what this game is called, or even if I’m remembering the rules correctly. I learned it (or something like it)
from Lenny Pitt, who recommended playing it with sweetener packets at restaurants.

Constantin Fahlberg and Ira Remsen synthesized saccharin for the first time in 1878, while Fahlberg was a postdoc in
Remsen’s lab investigating coal tar derivatives. In 1900, Ovidio Rebaudi published the first chemical analysis of ka’a he’ê,
a medicinal plant cultivated by the Guaraní for more than 1500 years, now more commonly known as Stevia rebaudiana.
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This recursive definition immediately suggests a recursive backtracking algorithm to determine whether
a given state of the game is good or bad. Moreover, for any good state, the backtracking algorithm finds
a move leading to a bad state for the opposing player. Thus, by induction, any player that finds the game
in a good state on their turn can win the game, even if their opponent plays perfectly; on the other hand,
starting from a bad state, a player can win only if their opponent makes a mistake.
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The first two levels of the game tree.

All computer game players are ultimately based on this simple backtracking strategy. However, since
most games have an enormous number of states, it is not possible to traverse the entire game tree in
practice. Instead, game programs employ other heuristics2 to prune the game tree, by ignoring states
that are obviously good or bad (or at least obviously better or worse that other states), and/or by cutting
off the tree at a certain depth (or ply) and using a more efficient heuristic to evaluate the leaves.

7.3 Subset Sum

Let’s consider a more complicated problem, called SUBSETSUM: Given a set X of positive integers and
target integer T , is there a subset of elements in X that add up to T? Notice that there can be more than
one such subset. For example, if X = {8, 6, 7, 5, 3, 10, 9} and T = 15, the answer is TRUE, thanks to the
subsets {8, 7} or {7, 5, 3} or {6, 9} or {5, 10}. On the other hand, if X = {11, 6, 5, 1, 7, 13, 12} and T = 15,
the answer is FALSE.

There are two trivial cases. If the target value T is zero, then we can immediately return TRUE,
because empty set is a subset of every set X , and the elements of the empty set add up to zero.3 On the
other hand, if T < 0, or if T 6= 0 but the set X is empty, then we can immediately return FALSE.

For the general case, consider an arbitrary element x ∈ X . (We’ve already handled the case where X
is empty.) There is a subset of X that sums to T if and only if one of the following statements is true:

• There is a subset of X that includes x and whose sum is T .

• There is a subset of X that excludes x and whose sum is T .

In the first case, there must be a subset of X \ {x} that sums to T − x; in the second case, there must
be a subset of X \ {x} that sums to T . So we can solve SUBSETSUM(X , T ) by reducing it to two simpler
instances: SUBSETSUM(X \ {x}, T − x) and SUBSETSUM(X \ {x}, T). Here’s how the resulting recusive
algorithm might look if X is stored in an array.

2A heuristic is an algorithm that doesn’t work.
3There’s no base case like the vacuous base case!
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SUBSETSUM(X [1 .. n], T ):
if T = 0

return TRUE

else if T < 0 or n= 0
return FALSE

else
return

�

SUBSETSUM(X [1 .. n− 1], T ) ∨ SUBSETSUM(X [1 .. n− 1], T − X [n])
�

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the elements
of the empty subset sum to T , so TRUE is the correct output. Otherwise, if T is negative or the set X is
empty, then no subset of X sums to T , so FALSE is the correct output. Otherwise, if there is a subset that
sums to T , then either it contains X [n] or it doesn’t, and the Recursion Fairy correctly checks for each of
those possibilities. Done.

The running time T (n) clearly satisfies the recurrence T (n)≤ 2T (n− 1) +O(1), which we can solve
using either recursion trees or annihilators (or just guessing) to obtain the upper bound T (n) = O(2n).
In the worst case, the recursion tree for this algorithm is a complete binary tree with depth n.

Here is a similar recursive algorithm that actually constructs a subset of X that sums to T , if one
exists. This algorithm also runs in O(2n) time.

CONSTRUCTSUBSET(X [1 .. n], T ):
if T = 0

return ∅
if T < 0 or n= 0

return NONE

Y ← CONSTRUCTSUBSET(X [1 .. n− 1], T )
if Y 6= NONE

return Y

Y ← CONSTRUCTSUBSET(X [1 .. n− 1], T − X [n])
if Y 6= NONE

return Y ∪ {X [n]}

return NONE

7.4 The General Pattern

Find a small choice whose correct answer would reduce the problem size. For each possible answer,
temporarily adopt that choice and recurse. (Don’t try to be clever about which choices to try; just try
them all.) The recursive subproblem is often more general than the original target problem; in each
recursive subproblem, we must consider only solutions that are consistent with the choices we have
already made.

ÆÆÆ

7.5 NFA acceptance

Recall that a nondeterministic finite-state automaton, or NFA, can be described as a directed graph,
whose edges are called states and whose edges have labels drawn from a finite set Σ called the alphabet.
Every NFA has a designated start state and a subset of accepting states. Any walk in this graph has a label,
which is a string formed by concatenating the labels of the edges in the walk. A string w is accepted by
an NFA if and only if there is a walk from the start state to one of the accepting states whose label is w.

More formally (or at least, more symbolically), an NFA consists of a finite set Q of states, a start state
s ∈Q, a set of accepting states A⊆Q, and a transition function δ : Q×Σ→ 2Q. We recursively extend
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the transition function to strings by defining

δ∗(q, w) =







{q} if w= ε,
⋃

r∈δ(q,a)

δ∗(r, x) if w= ax .

The NFA accepts string w if and only if the set δ∗(s, w) contains at least one accepting state.
We can express this acceptance criterion more directly as follows. We define a boolean function

Accepts?(q, w), which is TRUE if the NFA would accept string w if we started in state q, and FALSE

otherwise. This function has the following recursive definition:

Accepts?(q, w) :=



















TRUE if w= ε and q ∈ A

FALSE if w= ε and q ∈ A
∨

r∈δ(q,a)

Accepts?(r, x) if w= ax

The NFA accepts w if and only if Accepts?(s, w) = TRUE.
In the magical world of non-determinism, we can imagine that the NFA always magically makes

the right decision when faces with multiple transitions, or perhaps spawns off an independent parallel
thread for each possible choice. Alas, real computers are neither clairvoyant nor (despite the increasing
use of multiple cores) infinitely parallel. To simulate the NFA’s behavior directly, we must recursively
explore the consequences of each choice explicitly.

The recursive definition of Accepts? translates directly into the following recursive backtracking
algorithm. Here, the transition function δ and the accepting states A are represented as global boolean
arrays, where δ[q, a, r] = TRUE if and only if r ∈ δ(q, a), and A[q] = TRUE if and only if q ∈ A.

ACCEPTS?(q, w[1 .. n]):
if n= 0

return A[q]
for all states r

if δ[q, w[1], r] and ACCEPTS?(r, w[2 .. n])
return TRUE

return FALSE

To determine whether the NFA accepts a string w, we call ACCEPTS?(δ, A, s, w).
The running time of this algorithm satisfies the recursive inequailty T (n)≤ O(|Q|) · T (n− 1), which

immediately implies that T (n) = O(|Q|n).

7.6 Longest Increasing Subsequence

Now suppose we are given a sequence of integers, and we want to find the longest subsequence whose
elements are in increasing order. More concretely, the input is an array A[1 .. n] of integers, and we want
to find the longest sequence of indices 1≤ i1 < i2 < · · · ik ≤ n such that A[i j]< A[i j+1] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the kinds of
objects we’re playing with: sequences and subsequences.

A sequence of integers is either empty
or an integer followed by a sequence of integers.
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This definition suggests the following strategy for devising a recursive algorithm. If the input sequence
is empty, there’s nothing to do. Otherwise, we only need to figure out what to do with the first element of
the input sequence; the Recursion Fairy will take care of everything else. We can formalize this strategy
somewhat by giving a recursive definition of subsequence (using array notation to represent sequences):

The only subsequence of the empty sequence is the empty sequence.

A subsequence of A[1 .. n] is either a subsequence of A[2 .. n]
or A[1] followed by a subsequence of A[2 .. n].

We’re not just looking for just any subsequence, but a longest subsequence with the property that
elements are in increasing order. So let’s try to add those two conditions to our definition. (I’ll omit the
familiar vacuous base case.)

The LIS of A[1 .. n] is
either the LIS of A[2 .. n]

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining the object ‘longest increasing
subsequence’ in terms of the slightly different object ‘longest increasing subsequence with elements
larger than x ’, which we haven’t properly defined yet. Fortunately, this second object has a very similar
recursive definition. (Again, I’m omitting the vacuous base case.)

If A[1]≤ x , the LIS of A[1 .. n] with elements larger than x is
the LIS of A[2 .. n] with elements larger than x .

Otherwise, the LIS of A[1 .. n] with elements larger than x is
either the LIS of A[2 .. n] with elements larger than x

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest increasing
subsequence with elements larger than −∞. Rewriting this recursive definition into pseudocode gives
us the following recursive algorithm.

LIS(A[1 .. n]):
return LISBIGGER(−∞, A[1 .. n])

LISBIGGER(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISBIGGER(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISBIGGER(A[1], A[2 .. n])
if L >max

max← L
return max

The running time of this algorithm satisfies the recurrence T(n) ≤ 2T(n− 1) +O(1), which as usual
implies that T (n) = O(2n). We really shouldn’t be surprised by this running time; in the worst case, the
algorithm examines each of the 2n subsequences of the input array.
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The following alternative strategy avoids defining a new object with the “larger than x” constraint.
We still only have to decide whether to include or exclude the first element A[1]. We consider the case
where A[1] is excluded exactly the same way, but to consider the case where A[1] is included, we remove
any elements of A[2 .. n] that are larger than A[1] before we recurse. This new strategy gives us the
following algorithm:

FILTER(A[1 .. n], x):
j← 1
for i← 1 to n

if A[i]> x
B[ j]← A[i]; j← j + 1

return B[1 .. j]

LIS(A[1 .. n]):
if n= 0

return 0
else

max← LIS(prev, A[2 .. n])
L← 1+ LIS(A[1], FILTER(A[2 .. n], A[1]))
if L >max

max← L
return max

The FILTER subroutine clearly runs in O(n) time, so the running time of LIS satisfies the recurrence
T (n)≤ 2T (n− 1) +O(n), which solves to T (n)≤ O(2n) by the annihilator method. This upper bound
pessimistically assumes that FILTER never actually removes any elements; indeed, if the input sequence
is sorted in increasing order, this assumption is correct.

7.7 Optimal Binary Search Trees

Retire this example? It’s not a bad example, exactly—certainly it’s infinitely better than the
execrable matrix-chain multiplication problem from Aho, Hopcroft, and Ullman—but it’s not the best
first example of tree-like backtracking. Minimum-ink triangulation of convex polygons is both more
intuitive (geometry FTW!) and structurally equivalent. CFG parsing and regular expression matching
(really just a special case of parsing) have similar recursive structure, but are a bit more complicated.

ÆÆÆ

Our next example combines recursive backtracking with the divide-and-conquer strategy. Recall that the
running time for a successful search in a binary search tree is proportional to the number of ancestors of
the target node.4 As a result, the worst-case search time is proportional to the depth of the tree. Thus, to
minimize the worst-case search time, the height of the tree should be as small as possible; by this metric,
the ideal tree is perfectly balanced.

In many applications of binary search trees, however, it is more important to minimize the total cost
of several searches rather than the worst-case cost of a single search. If x is a more ‘popular’ search
target than y , we can save time by building a tree where the depth of x is smaller than the depth of y ,
even if that means increasing the overall depth of the tree. A perfectly balanced tree is not the best
choice if some items are significantly more popular than others. In fact, a totally unbalanced tree of
depth Ω(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of keys A[1 .. n]
and an array of corresponding access frequencies f [1 .. n]. Our task is to build the binary search tree
that minimizes the total search time, assuming that there will be exactly f [i] searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a good recursive
definition of the function we are trying to optimize! Suppose we are also given a binary search tree T
with n nodes. Let vi denote the node that stores A[i], and let r be the index of the root node. Ignoring

4An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor of v is either the parent
of v or a proper ancestor of the parent of v.

8



Algorithms Lecture 7: Backtracking [Fa’14]

constant factors, the cost of searching for A[i] is the number of nodes on the path from the root vr to vi .
Thus, the total cost of performing all the binary searches is given by the following expression:

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] ·#nodes between vr and vi

Every search path includes the root node vr . If i < r, then all other nodes on the search path to vi are in
the left subtree; similarly, if i > r, all other nodes on the search path to vi are in the right subtree. Thus,
we can partition the cost function into three parts as follows:

Cost(T, f [1 .. n]) =
r−1
∑

i=1

f [i] ·#nodes between left(vr) and vi

+
n
∑

i=1

f [i]

+
n
∑

i=r+1

f [i] ·#nodes between right(vr) and vi

Now the first and third summations look exactly like our original expression (*) for Cost(T, f [1 .. n]).
Simple substitution gives us our recursive definition for Cost:

Cost(T, f [1 .. n]) = Cost(left(T ), f [1 .. r − 1]) +
n
∑

i=1

f [i] + Cost(right(T ), f [r + 1 .. n])

The base case for this recurrence is, as usual, n = 0; the cost of performing no searches in the empty tree
is zero.

Now our task is to compute the tree Topt that minimizes this cost function. Suppose we somehow
magically knew that the root of Topt is vr . Then the recursive definition of Cost(T, f ) immediately
implies that the left subtree left(Topt) must be the optimal search tree for the keys A[1 .. r −1] and access
frequencies f [1 .. r − 1]. Similarly, the right subtree right(Topt) must be the optimal search tree for the
keys A[r + 1 .. n] and access frequencies f [r + 1 .. n]. Once we choose the correct key to store at the
root, the Recursion Fairy automatically constructs the rest of the optimal tree. More formally, let
OptCost( f [1 .. n]) denote the total cost of the optimal search tree for the given frequency counts. We
immediately have the following recursive definition.

OptCost( f [1 .. n]) = min
1≤r≤n

¨

OptCost( f [1 .. r − 1]) +
n
∑

i=1

f [i] + OptCost( f [r + 1 .. n])

«

Again, the base case is OptCost( f [1 .. 0]) = 0; the best way to organize no keys, which we will plan to
search zero times, is by storing them in the empty tree!

This recursive definition can be translated mechanically into a recursive algorithm, whose running
time T (n) satisfies the recurrence

T (n) = Θ(n) +
n
∑

k=1

�

T (k− 1) + T (n− k)
�

.

The Θ(n) term comes from computing the total number of searches
∑n

i=1 f [i].
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Yeah, that’s one ugly recurrence, but it’s actually easier to solve than it looks. To transform it into a
more familiar form, we regroup and collect identical terms, subtract the recurrence for T (n− 1) to get
rid of the summation, and then regroup again.

T (n) = Θ(n) + 2
n−1
∑

k=0

T (k)

T (n− 1) = Θ(n− 1) + 2
n−2
∑

k=0

T (k)

T (n)− T (n− 1) = Θ(1) + 2T (n− 1)

T (n) = 3T (n− 1) +Θ(1)

The solution T(n) = Θ(3n) now follows from the annihilator method.
Let me emphasize that this recursive algorithm does not examine all possible binary search trees.

The number of binary search trees with n nodes satisfies the recurrence

N(n) =
n−1
∑

r=1

�

N(r − 1) · N(n− r)
�

,

which has the closed-from solution N(n) = Θ(4n/
p

n). Our algorithm saves considerable time by
searching independently for the optimal left and right subtrees. A full enumeration of binary search trees
would consider all possible pairings of left and right subtrees; hence the product in the recurrence for
N(n).

7.8 CFG Parsing

Our final example is the parsing problem for context-free languages. Given a string w and a context-free
grammar G, does w belong to the language generated by G? Recall that a context-free grammar over
the alphabet Σ consists of a finite set Γ of non-terminals (disjoint from Σ) and a finite set of production
rules of the form A→ w, where A is a nonterminal and w is a string over Σ∪ Γ .

Real-world applications of parsing normally require more information than just a single bit. For
example, compilers require parsers that output a parse tree of the input code; some natural language
applications require the number of distinct parse trees for a given string; others assign probabilities to
the production rules and then ask for the most likely parse tree for a given string. However, these more
general problems can be solved using relatively straightforward generalizations of the following decision
algorithm.

Backtracking recurrence behind CYKÆÆÆ

Exercises

1. (a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and B is both a
subsequence of A and a subsequence of B. Give a simple recursive definition for the function
lcs(A, B), which gives the length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A and B is
another sequence that contains both A and B as subsequences. Give a simple recursive defini-
tion for the function scs(A, B), which gives the length of the shortest common supersequence
of A and B.
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(c) Call a sequence X [1 .. n] oscillating if X [i]< X [i + 1] for all even i, and X [i]> X [i + 1] for
all odd i. Give a simple recursive definition for the function los(A), which gives the length of
the longest oscillating subsequence of an arbitrary array A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length of the shortest
oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X [1 .. n] accelerating if 2 · X [i]< X [i − 1] + X [i + 1] for all i. Give a simple
recursive definition for the function lxs(A), which gives the length of the longest accelerating
subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next two lecture notes!
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