
DIGITAL ELECTRONICS

Understand The Basic Concepts of Analog and Digital Signals

Introduction :

 The branch of electronics, which deals with digital circuits, is called digital

electronics. Over the past several decades, digital electronics have been utilized

in the design and manufacturing of various industrial, commercial and household

electronic gadgets. Due to the proliferation of digital electronics, it is very

important to inculcate the basic knowledge of digital electronics to develop

conceptual knowledge and practical experience among the stakeholders.

Electronic systems can be classified into two types of systems in which the

mode of electron transfer from one end to another end differs. They are,

1. Analog system

 2. Digital system

Analog and Digital Signals

i) Analog Signals :

A continuously varying signal(voltage or current) is called as an analog signal.

Example: Sinusoidal waves.

A sample of analog signal that varies with time is shown in Figures.

Representation of an Analog signal

ii) Digital Signal

A signal (voltage or current) that can have only two discrete values is called a

digital signal.

Example: Square wave. The digital waveform is shown in Figure

Digital operations have two states (i.e. ON or OFF) and hence it is more

simple and reliable than many valued analog operations.

Digital Circuit

An electronic circuit that handles only a digital signal is called a digital

circuit. Example: Digital calculator, Digital computer The digital operation is a two

state operation (i.e. ON or OFF, 1 or 0) and therefore a digital circuit uses only

two digits 1 and 0 in the binary number system. In order to understand the

concepts in digital circuits, first we discuss about the number system in the

following title.

 Digital circuits Digital Circuits Board

Number System

Introduction :

 Number system is commonly used to count any activity or articles. In

practical life, we are using decimal number system. In decimal number system, 10

digits(0,1,2,3,4,5,6,7,8,9) are used. But in digital electronics, we use ‘1’ and ‘0’.

Computers, microprocessor and digital electronic devices do not process

decimal numbers. Instead, they work with binary number, which use only the two

digits‘0’ and’1’

People do not like working with binary numbers, owing to their very lengthy

combinations of digits, while representing larger decimal values.

As a result, octal and hexadecimal numbers are widely used to compress

long strings of binary numbers. Some number systems are given below.

Binary Number

 Binary number contains only two numbers of ‘0’ and ‘1’. It has radix or base

of ‘2’.

Example: 10102

Almost all digital systems are based on binary number. A switch is one

example of a natural binary device, because it exists only two states, namely ON

or OFF, 1 or 0.

Octal Number

Octal number contains only eight numbers of 0,1,2,3,4,5,6 and 7. It has a radix or

base of 8.

 Example: 76128

Hexadecimal Number

Hexadecimal number contains only sixteen numbers of

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. It has a radix or base of 16.

Example: 508D16

Decimal Number System

Number 2 8 5 7 . 4 5

Weight of each digit 103 102101 100 .10-1 10-2

Binary Number System

Number 1 0 1 1 . 0 1

Weight of each digit 23 2221 20 .2-1 2-2

Octal Number System

Number 7 3 5 6. 3 2

Weight of each digit 83 8281 80 .8-1 8-2

Hexadecimal Number System

Number 8 A B 5 . C 9

Weight of each digit 163 162161 160 .16-1 16-2

CONVERSIONS

Introduction :

Conversion of binary number from one number format to another number

format can be performed by adapting some rules and regulations. Some of the

important conversion processes are explained below. For the conversion of

integer and fractional number, separate conversion methods are used.

Decimal to Binary Conversion

In this case, the decimal number is divided by 2, and writing down the

remainder after each division. The remainders are taken in reverse order to

form the binary number.

Example: Conversion of 2610 to its equivalent binary number

2 26

2 13 - 0

2 6 - 1

2 3 - 0

 1 - 1

Hence, 110102 =2610

Binary to Decimal Conversion

To convert binary number to its equivalent decimal number, multiply each

binary digit by its weight and then add the resulting products.

Example: Conversion of 11012 to its equivalent decimal number.

1 0 1 1

 23 22 21 20

Equivalent decimal number

= (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20)

= (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1)

= 8 + 0 + 2 + 1 = 11

Hence, 10112 = 1110

Decimal to Octal Conversion

In the case of decimal to octal conversion, the decimal number is divided

by 8, and writes down the remainder after each division. The remainders are

taken in reverse order to form the octal number.

Example: Conversion of the decimal number 408 to its equivalent octal number.

8 408

8 51 - 0

 6 - 3

Hence, 40810= 6308

Octal to Decimal Conversion

To convert an octal number to its equivalent decimal number, multiply

each octal digit by its weight and then add the resulting products.

Example: Conversion of an octal number 375 into its equivalent decimal number.

The weight of 5 is 80, 7 is 81 and 3 is 82.

Hence, the equivalent decimal number is

= (3x82)+(7x81)+(5x80)

= (3x64)+(7x8)+(5x1)

= 192+56+5= 253

Hence, 3758 = 25310

Decimal to Hexadecimal Conversion

In decimal to hexadecimal conversion, divide the decimal number by 16

and write down the remainder after each division. The remainders are taken in

reverse order to form the hexadecimal number.

Example: Conversion of a decimal number 4538 to its equivalent hexadecimal

number.

16 4538

16 283 - 10

16 17 - 11

 1 - 1

Hence, 453810= 11BA16

Hexadecimal to Decimal Conversion

To convert the hexadecimal to its equivalent decimal number, multiply each

hexadecimal digit by its weight and then add the resulting products.

Example: Conversion of a hexadecimal number of B35 to its equivalent

decimal number.

The weight of B is 162, 3 is 161 and 5 is 160

Hence its equivalent Decimal number is

= (Bx162)+(3x161)+(5x160)

= (11x256)+(3x16)+(5x1)

 = 2816+48+5 =2869

Hence, B3516 = 286910

Octal to Binary Conversion

In this, each octal digit is converted into its equivalent three digit binary

form. The octal number and its equivalent three digit binary numbers are shown

in the Table 1.

Table 1: Conversion of Octal into

Equivalent Binary Number

Octal number Equivalent Binary
number

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Example: Conversion of an octal number 43 to its equivalent binary number.

4 3

100 011

438 = 1000112

Binary to Octal Conversion

The binary numbers are grouped as 3-bit from left to right. If there is any

binary digit left with one or two bits then sufficient numbers of zero are added

to the left most side of the binary number. Then, grouped 3-bit number is

converted into an equivalent octal number.

Example: Conversion of a binary number of 010111011 to its equivalent

octal number.

010 111 011

 2 7 3

Hence, 0101110112 = 2738

Hexadecimal to Binary Conversion

In this, each hexadecimal digit is converted into its equivalent four digit

binary form.

The hexadecimal number and its equivalent 4 digit binary numbers are

shown in the Table 2.

Table 2: Conversion of Hexadecimal into Equivalent

Binary Number

Hexadecimal
Number Equivalent Binary Number

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Example: Conversion of a hexadecimal number 7B3 into its equivalent

binary number.

7 B 3

0111 1011 0011

Hence, 7B316 = 0111101100112 Note: Delete the left most zeros.

Binary to Hexadecimal Conversion

In this conversion, the binary number is arranged in group of 4 bits.

Suppose the binary number grouping is not completed with the 4 digits, sufficient

numbers of zero are added to the left most side of the binary number.

Example: Conversion of a binary number 110110101011100 into its equiv-

alent hexadecimal number.

0110 1101 0101 1100

6 D 5 C

Hence, 110110 1 0 1 0111002 = 6D5C16

Decimal to BCD(Binary Coded Decimal) Conversion

In this method, each decimal digit is converted into its equivalent 4 digits

binary form (BCD).

Example: Conversion of a decimal number 892 to its equivalent BCD

number.

8 9 2

1000 1001 0010

Hence, 89210 = 100010010010BCD
1U BCD

BCD(Binary Coded Decimal) to Decimal Conversion

In this method, each BCD number grouped in the form of 4 digit binary

pattern is converted into its equivalent decimal number.

Example: Convert a BCD num- ber100100111000 to its equivalent decimal

number.
 1001 0011 1000

9 3 8

Hence, 100100111000BCD = 93810

Binary Codes

All digital circuits operate with only two states namely, High and Low or

ON and OFF or 1 and 0. In binary number system, the number of bits required

goes on increasing as the numbers become larger and larger. So, some special

binary codes are required to represent alphabets and special characters. Based

on these points, different types of binary code have been developed.

They are,

1. BCD codes

2. Gray codes

3. Excess 3 code

4. ASCII code

BCD - 8421 Code Conversion

A group of bits (usually four) which are used to represent decimal numbers

0 to 9 are called BCD(Binary Coded Decimal) codes. The most popular BCD code

is 8421 code. The 8421 indicates the binary weights of the four bits (23 , 22,

2 1 , 20). Using the four bits with weights 8 ,4 ,2 , 1 , we can easily represent the

decimal numbers 0 to 9 as given in the Table 1 .

Table 1: Conversion of Decimal

Number into BCD Code
Decimal Numbers BCD Code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 0001 0000

56 0101 0110

963 1001 0110
0011

Gray Code

The gray code is not a weighted code. Therefore it is not suitable for arithmetic

operations, but finds applications in input/output devices and in some types of

analog to digital converters.

Table 1: Gray code conversion

Decimal
numbers

Binary
code

Gray
code

0 0000 0000
1 0001 0001

2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

The gray code is a minimum change code in which only one bit in the code

group changes when moving from one step to the next. The gray code is also called

as reflected binary code, which has a special property of containing two adjacent

code numbers that differ by only one bit. The gray code representation for the

decimal numbers 0 to 15, together with the binary code is given in the Table 1.

Excess-3 Code

The excess-3 code is another BCD code used in earlier computers. The excess-3

code is not a weighted code. It is a self-complementing code and helps in

performing subtraction operations in digital computers. The excess-3 code is also

a reflection code.

An excess-3 code is obtained by adding 3 to each digit of a decimal number.

For example, to encode the decimal number 6 into an excess-3 code, we must first

add 3, in order to obtain 9. The 9 is then encoded into its equivalent 4 bit binary

code 1001 .

 Conversion of the decimal number 548 to its equivalent excess-3 code.

 Decimal number 5 4 8

 Add 3 to each bit +3 + 3 + 3

 Sum = 8 7 11

Hence, the equivalent excess-3code 1000 0111 1011

The representation of Excess-3 code for the decimal numbers is given in

the Table 1.

Table 1: Excess-3 Code of Decimal

Number

Decimal
Number

Excess-3
Code

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

Logic Gates

Logic gates are digital circuits. Digital circuits operate in binary modes,

each input and output signal is either ‘1’ or ‘0’. The ‘1’ and ‘0’ designation represents

predefined voltage ranges. These electronic switching circuits are called as logic

gates. Each logic gate can have one or more inputs and only one output.

All logic gates can be analysed by constructing a truth table. A truth table

represents all possible input and the corresponding output combinations.

The term “logic” is usually used to refer to a decision making process. A

logic gate makes logical decisions regarding the existence of output depending

upon the nature of the input. Hence, such circuits are called logic circuits.

Basic Logic Gates

The three basic logic gates that makeup all digital circuits are

i) OR gate

ii) AND gate

iii) NOT gate.

The following points may be noted about logic gates.

1. A binary ‘0’ represents 0V and binary ‘1’ represents +5V. It is common to

refer to binary ‘0’ as LOW input or output and binary ‘1’ as HIGH input or

output.

2. A logic gate has only one output and the output will depend upon the input

signals and the type of gates.

3. The operation of a logic gate may be described either by truth table or

Boolean algebra.

OR Gate

An OR gate has two or more input signals and only one output signal. An

OR gate performs logical addition.

In OR gate, the inputs A,B, C, etc., produce the output as A+B+C+ etc. The

symbol and the truth table of two input OR gate are shown in the Figure 1.

Figure 1 Symbol and Truth Table of OR Gate

A two input OR gate contains two input signals and only one output signal.

The two input signal makes 4(22) combination of outputs.

In OR gates, the output is high when any one of the input is in high level.

Conversely, the output is low when all the inputs are in low level.

AND Gate

An AND gate has two or more inputs and one output. An AND gate performs

logical multiplication. In an AND gates, the inputs A, B, C, etc., produce the output

as A.B.C.etc. The symbol and the truth table of two input AND gate are shown in

Figure 1 .

It contains two input signals and only one output signal. In AND gates, the

output is only high when all inputs are in high level. Conversely, the output is low

only when any one of the input is in low level.

Figure 1 Symbol and Truth Table of AND Gate

NOT Gate

A NOT gate has only one input and one output. For the NOT gate, when the

input is ‘0’ (LOW), the output is ‘1’ (HIGH)and when the input is ‘1’ (HIGH), the

output is ‘0’ (LOW). That is, the output is complement or inverse of the input.

Figure 1 shows the symbol and truth table for the NOT gate. The input is

marked as A and the output is marked as

Y = A. The output can be read as complement of A or inverse of A or simply A bar.

Figure 1 Symbol and Truth Table of NOT Gate

Digital Electronics

Unit I

Numbers We Use in

Digital Electronics

R.Senthamizh Selvan

Number System in Digital Electronics

Preview

• Counting in Decimal

and Binary

• Place Value

• Binary to Decimal

Conversion

• Decimal to Binary

Conversion

• Electronic

Translators

• Hexadecimal

Numbers

• Octal Numbers

COUNTING IN

DECIMAL AND BINARY

• Number System -

Code using symbols that refer to

a number of items.

• Decimal Number System -

Uses ten symbols (base 10 system)

• Binary System -

Uses two symbols (base 2 system)

PLACE VALUE

• Numeric value of symbols in different positions.

• Example - Place value in binary system:

Binary

8s 4s 2s 1s

Number

Place Value

Yes Yes No No

1 0 01

RESULT: Binary 1100 = decimal 8 + 4 + 0 + 0 = decimal 12

BINARY TO DECIMAL

CONVERSION

Convert Binary Number 110011

to a Decimal Number:

32 + 16 + 0 + 0 + 2 + 1 = 51

1 1 0 0 1 1

Decimal

Binary

DECIMAL TO BINARY

CONVERSION

Divide by 2 Process

Decimal # 13 ÷ 2 = 6 remainder 1

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

1 101

ELECTRONIC TRANSLATORS

Devices that convert from decimal to

binary numbers and from binary to

decimal numbers.

Encoders -

translates from decimal to binary

Decoders -

translates from binary to decimal

ELECTRONIC ENCODER -

DECIMAL TO BINARY

0

Decimal

to

Binary

Encoder

Binary output
Decimal input

0 0 0 0

5

0 1 0 1

7

0 1 1 1

3

0 0 1 1

• Encoders are available in IC form.

• This encoder translates from decimal

input to binary (BCD) output.

Binary-to-

7-Segment

Decoder/

Driver

ELECTRONIC DECODING:

BINARY TO DECIMAL
Binary input

0 0 0 0

Decimal output

0 0 0 10 0 1 00 0 1 10 1 0 0

• Electronic decoders are available in IC form.

• This decoder translates from binary to decimal.

• Decimals are shown on an 7-segment LED display.

• This decoder also drives the 7-segment display.

Uses 16 symbols -Base 16 System

0-9, A, B, C, D, E, F

Decimal

1

9

10

15

16

Binary

0001

1001

1010

1111

10000

Hexadecimal

1

9

A

F

10

HEXADECIMAL NUMBER SYSTEM

•Hexadecimal to Binary Conversion

Hexadecimal C 3

Binary 1100 0011

Binary 1110 1010

Hexadecimal E A

•Binary to Hexadecimal Conversion

HEXADECIMAL AND

BINARY CONVERSIONS

DECIMAL TO HEXADECIMAL

CONVERSION

Divide by 16 Process

Decimal # 47 ÷ 16 = 2 remainder 15

2 ÷ 16 = 0 remainder 2

F2

HEXADECIMAL TO DECIMAL

CONVERSION

Convert hexadecimal number

2DB to a decimal number

512 + 208 + 11 = 731

2 D BHexadecimal

Decimal

Place Value 256s 16s 1s

(256 x 2) (16 x 13) (1 x 11)

OCTAL NUMBERS

Uses 8 symbols -Base 8 System

0, 1, 2, 3, 4, 5, 6, 7

Decimal

1

6

7

8

9

Octal

1

6

7

10

11

Binary

001

110

111

001 000

001 001

PRACTICAL SUGGESTION ON

NUMBER SYSTEM CONVERSIONS

• Use a scientific calculator

• Most scientific calculators have DEC, BIN,

OCT, and HEX modes and can either

convert between codes or perform

arithmetic in different number systems.

• Most scientific calculators also have other

functions that are valuable in digital

electronics such as AND, OR, NOT,

XOR, and XNOR logic functions.

The 8085 Microprocessor

Architecture

Introduction

• INTRODUCTION

Evolution of Microprocessors

Evolution of Digital computers

• Single-Chip Microcomputers

• Microprocessor Applications

• Programming

Intro. Contd.

• Digital Computers

• Memory

• Buses

• Memory Addressing Capacity of CPU

• Processing Speed of Computer

• Large and Small Computers

• Batch Processing

Intro. Contd.

• Multiprogramming

• Multiuser System

• Multitasking

• Multiprocessor

• Distributed Processing

• Computer Network

• LAN

Intro. Contd.

• CAD

• CAM

• Computer vision

• Voice Recognition and Response

• Artificial Intelligence

Intro. Contd.

• A CPU built into a single LSI or VLSI

chip – Microprocessor

• A digital computer whose CPU is a

microprocessor is called a

microcomputer

4004 1971 4BIT 16

8008 1972 8 18

8080 1973 8 40

8085 1976 8 40

8086 1978 16 40

8088 1980 8/16 40

80186/88 1982 8/16 40

68

80286 1982 16 68

80386dx 1985 32 132

80386sx 1988 16/32 100

80486 1989 32 168

I860 1989 64 168

Evolution of Microprocesors - Intel

Evolution of Digital Computers

• First Generation – Vaccum Tubes

• Second Generation - Transistors

• Third Generation - IC

• Fourth Generation - Microprocessors

• Fifth Generation - Research and

development stage.

Single chip Microcomputers

• Microcomputers – CPU ,RAM,ROM

&I/O ports on a single chip – also

known as microcontrollers.

• Eg. Intel 8048,8051 series, M6801 series

• Uses VLSI technology

Microprocessor Applications

• Word Processing

• Teletex System

• Reservation for Airlines and Railways

• Industrial and Commercial Application

• General Application

• Use of Computers for Data Analysis

• Use of Computers in Graphics

• Use of computers in Database Management

• Use of computers in Banks

• Some other Applications

Programming

• Machine Level Language

• Assembly Level Language

• Compiler

• Assembler

The typical processor system consists of:

 CPU (central processing unit)

 ALU (arithmetic-logic unit)

 Control Logic

 Registers, etc…

 Memory

 Input / Output interfaces

Processor System Architecture

Interconnections between these units:

 Address Bus

 Data Bus

 Control Bus

The internal architecture of the 8085 CPU is capable of performing the following

operations:

 Store 8-bit data (Registers, Accumulator)

 Perform arithmetic and logic operations (ALU)

 Test for conditions (IF / THEN)

 Sequence the execution of instructions

 Store temporary data in RAM during execution

The 8085: CPU Internal Structure

The 8085: CPU Internal Structure

The 8085: Registers

Registers

 Six general purpose 8-bit registers: B, C, D, E, H, L

 They can also be combined as register pairs to

perform 16-bit operations: BC, DE, HL

 Registers are programmable (data load, move, etc.)

Accumulator

 Single 8-bit register that is part of the ALU !

 Used for arithmetic / logic operations – the result is always stored in the

accumulator.

The 8085: CPU Internal Structure

• The Program Counter (PC)

– This is a register that is used to control the sequencing of the execution of

instructions.

– This register always holds the address of the next instruction.

– Since it holds an address, it must be 16 bits wide.

• The Stack pointer

– The stack pointer is also a 16-bit register that is used to point into memory.

– The memory this register points to is a special area called the stack.

– The stack is an area of memory used to hold data that will be retreived soon.

– The stack is usually accessed in a Last In First Out (LIFO) fashion.

The 8085: CPU Internal Structure

The 8085: CPU Internal

Structure
• IR

– This is a register that is used to holds the instruction until it is decoded..

• Status Register

– There is a set of five flip-flops which act as status flags.

– Flag registers – holds 1-bit flag

Temporary Register

PSW (Program Status Word) –

The ALU

• In addition to the arithmetic & logic circuits, the ALU includes

the accumulator, which is part of every arithmetic & logic

operation.

• Also, the ALU includes a temporary register used for holding

data temporarily during the execution of the operation. This

temporary register is not accessible by the programmer.

www.yesnarayanan.blogspot.com

• Description

The Flags register

There is also the flags register whose bits are affected by the arithmetic & logic

operations.

S-sign flag

The sign flag is set if bit D7 of the accumulator is set after an arithmetic or

logic operation.

Z-zero flag

Set if the result of the ALU operation is 0. Otherwise is reset. This flag is

affected by operations on the accumulator as well as other registers. (DCR B).

AC-Auxiliary Carry

This flag is set when a carry is generated from bit D3 and passed to D4 . This

flag is used only internally for BCD operations.

P-Parity flag

After an ALU operation if the result has an even # of 1’s the p-flag is set.

Otherwise it is cleared. So, the flag can be used to indicate even parity.

CY-carry flag

The Carry flag is set if there is a carry from addition or a borrow from

subtraction or comparison otherwise zero

The 8085 and Its Busses

• The 8085 is an 8-bit general purpose microprocessor that can

address 64K Byte of memory.

• It has 40 pins and uses +5V for power. It can run at a maximum

frequency of 3 MHz.

– The pins on the chip can be grouped into 6 groups:

• Address Bus.

• Data Bus.

• Control and Status Signals.

• Power supply and frequency.

• Externally Initiated Signals.

• Serial I/O ports.

Pin Configuratrion

Power supply

• VCC:-Vcc is to be connected to +5V power supply.

• Vss:-Ground reference

Serial I/O ports.

• SID (I/P)and SOD(O/P):-These pins are

used for serial data communication.

Externally Initiated Signals.

• Pin 6 to 11:- (I/P)

• These pins are used for interrupt signals. Generally and external

devices are connected here which requests the microprocessor to

perform a particular task.

There are 5 pins for hardware interrupts-

TRAP, RST7.5, RST 6.5, RST5.5 and INTR

INTA(O/P) is used for acknowledgement.

• Microprocessor sends the acknowledgement to external devices

through the INTA pin.

Externally Initiated Signals

READY (I/P)

READY is used by the microprocessor to check whether a

peripheral is ready to accept or transfer data If READY is high

then the periphery is ready for data transfer. If not the

microprocessor waits until READY goes high.

HOLDI/P)

This indicates if any other device is requesting the use of address

and data bus

HLDA: (O/P)

HLDA is the acknowledgment signal for HOLD. It indicates

whether the HOLD signal is received or not. After the execution

of HOLD request, HLDA goes low.

Externally Initiated Signals

• RESET IN’: (I/P)

This pin resets the program counter to 0 and resets interrupt

enable and HLDA flip-flops. The CPU is held in reset condition

until this pin is high. However the flags and registers won’t get

affected except for instruction register.

• RESET OUT: (O/P)

This pin indicates that the CPU has been reset by RESET IN’.

The Address and Data Busses

• The address bus has 8 signal lines A8 – A15(O/P) which are

unidirectional.

• The other 8 address bits are multiplexed (time shared) with the 8

data bits.

– So, the bits AD0 – AD7(I/P) are bi-directional and serve as

A0 – A7 and D0 – D7 at the same time.

• During the execution of the instruction, these lines carry

the address bits during the early part, then during the

late parts of the execution, they carry the 8 data bits.

– In order to separate the address from the data, we can use a

latch to save the value before the function of the bits

changes.

The Control and Status Signals

• There are 4 main control and status signals. These are:

• ALE: (O/P)Address Latch Enable. This signal is a pulse

that become 1 when the AD0 – AD7 lines have an

address on them. It becomes 0 after that. This signal can

be used to enable a latch to save the address bits from the

AD lines.

• RD: (O/P)Read. Active low.

• WR: (O/P)Write. Active low.

• IO/M: O/P)This signal specifies whether the operation is

a memory operation (IO/M=0) or an I/O operation

(IO/M=1).

• S1 and S0 : (O/P)Status signals to specify the kind of

operation being performed .Usually un-used in small

systems.

Frequency Control Signals

• There are 3 important pins in the frequency control group.

– X0 and X1 (I/P)are the inputs from the crystal or clock generating

circuit.

• The frequency is internally divided by 2.

– So, to run the microprocessor at 3 MHz, a clock running

at 6 MHz should be connected to the X0 and X1 pins.

– CLK (OUT): An output clock pin to drive the clock of the rest of the

system.

The 8085 Bus Structure

The 8-bit 8085 CPU (or MPU – Micro Processing Unit) communicates with the other units

using a 16-bit address bus, an 8-bit data bus and a control bus.

Instruction Cycle

• Instruction cycle is defined,

as the time required completing the execution of an instruction.

 Fetch Operation

 Execute Operation

Steps For Fetching an

Instruction
• Lets assume that we are trying to fetch the instruction at memory

location 2005. That means that the program counter is now set to that

value.

– The following is the sequence of operations:

• The program counter places the address value on the address

bus and the controller issues a RD signal.

• The memory’s address decoder gets the value and determines

which memory location is being accessed.

• The value in the memory location is placed on the data bus.

• The value on the data bus is read into the instruction decoder

inside the microprocessor.

• After decoding the instruction, the control unit issues the

proper control signals to perform the operation.

Steps For Execute an

Instruction
• The following is the sequence of operations:

• The program counter places the address value on the address bus and

the controller issues a RD signal.

www.yesnarayanan.blogspot.com

Cycles and States

• From the above discussion, we can define terms that will become

handy later on:

– T- State: One subdivision of an operation. A T-state lasts for

one clock period.

• An instruction’s execution length is usually measured in

a number of T-states. (clock cycles).

– Machine Cycle: The time required to complete one operation

of accessing memory, I/O, or acknowledging an external

request.

• This cycle may consist of 3 to 6 T-states.

– Instruction Cycle: The time required to complete the

execution of an instruction.

• In the 8085, an instruction cycle may consist of 1 to 6

machine cycles.

More on the 8085 machine

cycles
• The 8085 executes several types of instructions with each

requiring a different number of operations of different types.

However, the operations can be grouped into a small set.

• The three main types are:

• Memory Read and Write.

• I/O Read and Write.

• Request Acknowledge.

• These can be further divided into various operations (machine

cycles).

Opcode Fetch Machine Cycle

• The first step of executing any instruction is the Opcode fetch cycle.

– In this cycle, the microprocessor brings in the instruction’s Opcode

from memory.

• To differentiate this machine cycle from the very similar

“memory read” cycle, the control & status signals are set as

follows:

– IO/M=0, s0 and s1 are both 1.

– This machine cycle has four T-states.

• The 8085 uses the first 3 T-states to fetch the opcode.

• T4 is used to decode and execute it.

– It is also possible for an instruction to have 6 T-states in an opcode

fetch machine cycle.

Memory Read Machine Cycle

• The memory read machine cycle is

exactly the same as the opcode fetch

except:

– It only has 3 T-states

– The s0 signal is set to 0 instead.

The Memory Read Machine

Cycle
– To understand the memory read machine cycle, let’s study the

execution of the following instruction:

• MVI A, 32

– In memory, this instruction looks like:

• The first byte 3EH represents the opcode for loading a byte into

the accumulator (MVI A), the second byte is the data to be

loaded.

– The 8085 needs to read these two bytes from memory before it can

execute the instruction. Therefore, it will need at least two machine

cycles.

– The first machine cycle is the opcode fetch discussed earlier.

– The second machine cycle is the Memory Read Cycle.

– Figure 3.10 page 83.

2000H

2001H

3E

32

Machine Cycles vs. Number of bytes in the instruction
• Machine cycles and instruction length, do not have a direct relationship.

– To illustrate lets look at the machine cycles needed to execute the following

instruction.

• STA 2065H

• This is a 3-byte instruction requiring 4 machine cycles and 13 T-states.

• The machine code will be stored

in memory as shown to the right

• This instruction requires the following 4 machine cycles:

– Opcode fetch to fetch the opcode (32H) from location 2010H,

decode it and determine that 2 more bytes are needed (4 T-states).

– Memory read to read the low order byte of the address (65H) (3 T-

states).

– Memory read to read the high order byte of the address (20H) (3 T-

states).

– A memory write to write the contents of the accumulator into the

memory location.

2010H

2011H

2012H

32H

65H

20H

The Memory Write Operation

• In a memory write operation:

– The 8085 places the address (2065H) on the

address bus

– Identifies the operation as a memory write

(IO/M=0, s1=0, s0=1).

– Places the contents of the accumulator on the data

bus and asserts the signal WR.

– During the last T-state, the contents of the data

bus are saved into the memory location.

Memory interfacing

• There needs to be a lot of interaction between the

microprocessor and the memory for the exchange of

information during program execution.

– Memory has its requirements on control signals

and their timing.

– The microprocessor has its requirements as well.

• The interfacing operation is simply the matching of

these requirements.

Memory structure & its requirements

• The process of interfacing the above two chips is the

same.

– However, the ROM does not have a WR signal.

Address

Lines

Date

Lines

CS

RDOutput Buffer

ROM

Address

Lines

Data Lines

CS

RDOutput Buffer

RAM
WRInput Buffer

Data Lines

Interfacing Memory

– Accessing memory can be summarized into the following three

steps:

– Select the chip.

– Identify the memory register.

– Enable the appropriate buffer.

– Translating this to microprocessor domain:

– The microprocessor places a 16-bit address on the address

bus.

– Part of the address bus will select the chip and the other

part will go through the address decoder to select the

register.

– The signals IO/M and RD combined indicate that a

memory read operation is in progress. The MEMR signal

can be used to enable the RD line on the memory chip.

Address decoding

• The result of address decoding is the identification of

a register for a given address.

– A large part of the address bus is usually

connected directly to the address inputs of the

memory chip.

– This portion is decoded internally within the chip.

– What concerns us is the other part that must be

decoded externally to select the chip.

– This can be done either using logic gates or a

decoder.

The Overall Picture
• Putting all of the concepts together, we

get:

A15-A8

Latch
AD7-AD0

D7- D0

A7- A0

8085

ALE

IO/MRDWR

1K Byte

Memory

Chip

WRRD

CS

A9- A0

A15- A10
Chip Selection

Circuit

8085 Instruction Set

 Data transfer operations

• Between registers

• Between memory location and a register

• Direct write to a register / memory

• Between I/O device and accumulator

 Arithmetic operations (ADD, SUB, INR, DCR)

 Logic operations

 Branching operations (JMP, CALL, RET)

8085 Instruction Types

8085 Instruction Types

8085 Instruction Types

Simple Data Transfer Operations

Examples:

 MOV B,A 47 From ACC to REG

 MOV C,D 4A Between two REGs

 MVI D,47 16 Direct-write into REGD

47

Simple Data Transfer Operations

Example:

 OUT 05 D3

05

Contents of ACC sent to output port number 05.

Simple Memory Access Operations

Simple Memory Access Operations

Arithmetic Operations

Arithmetic Operations

Arithmetic Operations

Overview of Logic Operations

Logic Operations

Logic Operations

Logic Operations

Branching Operations

Note: This is an unconditional jump operation.

It will always force the program counter to a fixed

memory address continuous loop !

Branching Operations

Conditional jump operations are very useful for

decision making during the execution of the program.

Direct Memory Access Operations

Direct Memory Access Operations

 Use a register PAIR as an address pointer !

 We can define memory access operations using the memory location (16 bit address)

stored in a register pair: BC, DE or HL.

 First, we have be able to load the register pairs.

LXI B, (16-bit address)

LXI D, (16-bit address)

LXI H, (16-bit address)

 We can also increment / decrement register pairs.

Indirect Memory Access Operations

Loading Register Pairs

In many real-time operations, the microprocessor should be able to receive an

external asynchronous signal (interrupt) while it is running a routine.

When the interrupt signal arrives:

 The processor will break its routine

 Go to a different routine (service routine)

 Complete the service routine

 Go back to the “regular” routine

Interrupts in 8085

In order to execute an interrupt routine, the processor:

 Should be able to accept interrupts (interrupt enable)

 Save the last content of the program counter (PC)

 Know where to go in program memory to execute

the service routine

 Tell the outside world that it is executing an interrupt

 Go back to the saved PC location when finished.

Interrupts in 8085

There are four other interrupt inputs in 8085 that

transfer the operation immediately to a specific address:

 TRAP: go to 0024

 RST 7.5: go to 003C

 RST 6.5 0034

 RST 5.5 002C

 RST 7.5, RST 6.5 and RST 5.5 are maskable interrupts, they are

acknowledged only if they are not masked !

Vectored Interrupts

Vectored Interrupts

SIM: Set Interrupt Mask

	Digital Electronics Unit 1.pdf
	Number system in Digital Electronics .pdf
	IIICS 8085 Microprocessor Architecture.pdf

